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ABSTRACT 
 

 Time series modeling of the price of agricultural commodities has immense importance in the Indian agricultural 
landscape. Volatility is an intrinsic property of time series. If positive and negative shocks of the same scale have 

differing effects on it, it is said to be asymmetric. The volatility of any time series is said to have long-term persistence 

if, for any given time epoch, it is significantly influenced by its distant past counterpart. The fractionally Integrated 
Exponential Generalized Autoregressive Conditional Heteroscedastic (FIEGARCH) model may be used to capture 

asymmetric volatility in any time series with long-term persistence. This paper uses the modal price series of onion for 

Delhi, Lasalgaon, and Bengaluru markets and S&P 500 index (close) data for empirical illustration. The GARCH, 
EGARCH, FIGARCH, and FIEGARCH models have been applied to the selected data sets. Significant asymmetric and 

long term persistence volatility in the selected time series has been found. It has been observed that the FIEGARCH 

model outperformed the other models in capturing volatility for all the selected time series.  
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I 

 

INTRODUCTION 
 

A time series refers to a sequence of data points recorded at successive points at 

regular intervals over a specific period. Time series analysis allows us to make 

informed decisions based on historical patterns. A unique feature of a time series is that 

the successive realizations separated through time are correlated. This important 

feature helps to capture the underlying phenomenon of a time series. A time series can 

be decomposed into linear and nonlinear components in a broad perspective. Time 

series modeling has gained importance since the 1970s and was pioneered by Box and 

Jenkins (Box et al., 2015) through the introduction of the autoregressive integrated 

moving average (ARIMA) model under the assumption of linearity and stationarity of 

the data set and the homoscedasticity of the error variance. Many applications of the 

ARIMA methodology can be found in the literature (Paul & Das, 2013; Paul et al., 

2020). The ARIMA methodology bears the lacuna of only addressing the linear 

component of a time series. To capture the nonlinear component of a time series like 

volatility, various complex models are introduced over time. Volatility is an important 

aspect of time series modeling, which represents the phenomenon of unexpected 

variation in the realizations of a time series. Proper knowledge of the behaviour of 

volatility of a financial time series can be helpful to all the stakeholders dealing with 
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it. Engle (1982) proposed the autoregressive conditional heteroscedastic (ARCH) 

model by relaxing the assumption of linearity and homoscedasticity of error variance 

to capture the volatility. Later, Bollerslev (1986) and Taylor (1986) proposed the 

generalized ARCH (GARCH) model independently of each other. Many applications 

of the ARCH and GARCH models can be found in the literature (Paul et al., 2009, 

2015 a). The GARCH architecture exhibits the same effect on volatility due to the 

positive and negative shocks of the same magnitude. This type of symmetric 

characterization may not be feasible for many practical situations. The reverse situation 

is regarded as asymmetric volatility when positive and negative shocks of the same 

magnitude affect volatility differently. The exponential GARCH (EGARCH) model 

(Nelson, 1991) is a better alternative to the GARCH model for addressing asymmetric 

volatility (Ghosh et al., 2010; Rakshit et al., 2023). Again, there may be long-term 

persistency among the realizations of any time series. The autocorrelation function 

(ACF) and partial autocorrelation function (PACF) are significant for a long lag 

(hyperbolic decay) in a long memory process. Long-term persistency can be found in 

linear dynamics (mean model) and nonlinear dynamics (variance model). To model the 

long-term persistency in the mean structure, Granger and Joyeux (1980) introduced the 

autoregressive fractionally integrated moving average (ARFIMA) model, where the 

differencing parameter is associated with fractional values instead of integer values 

like the ARIMA model. Similarly, the fractionally integrated term is introduced in the 

GARCH model to obtain the fractionally integrated GARCH (FIGARCH) model 

(Baillie et al., 1996) for capturing the long-term persistency in volatility. Application 

of the ARFIMA model (Paul, 2014), FIGARCH model (Paul et al., 2016 a; Rakshit & 

Paul, 2023), and the hybrid ARFIMA-FIGARCH model (Mitra et al., 2018) in 

agricultural price series can be found in the literature. Bollerslev and Mikkelsen (1996) 

proposed the fractionally integrated EGARCH (FIEGARCH) model to capture 

asymmetric volatility in long-term persistence.  

Prices for agricultural commodities also exhibit volatility. The reasons for 

volatility may be due to the seasonal production cycle (Karali & Thurman, 2010), 

weather abnormalities, a sudden disruption in the supply chain (Paul & Yeasin, 2022; 

Kumar et al., 2023), and policy changes. Onion is India’s second most produced 

vegetable after potatoes (31.273 million tonnes as per 3rd Advance Estimates, 2021-

22). Onion price exhibits a high degree of price volatility. The entire onion supply chain 

is heavily dependent on government regulations and is also disrupted frequently due to 

weather abnormalities. The paucity of proper storage infrastructure is another cause of 

price volatility. Various publications highlighted the different aspects of onion price 

volatility in India (Paul et al., 2015 b; Paul et al., 2016 b; Saxena et al., 2020; Rakshit 

et al., 2021). There exists a strong element of uncertainty in the market arrivals of 

onions, which, as a result, causes onion price volatility in India. This paper uses the 

modal price series of onion for Delhi, Lasalgaon, and Bengaluru markets and S&P 500 

index (close) data. The GARCH, EGARCH, FIGARCH, and FIEGARCH models have 

been applied to the selected time series. The rest of the paper has been organised as 
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follows: Section II includes the theoretical aspects of this study; Section III includes 

the empirical illustration, followed by concluding remarks in the final section.  

 
II 

 
MATERIALS AND METHODS 

 

2.1  The ARCH and GARCH Models 

Linear models, such as ARIMA, cannot describe changes in conditional variance 

structure in data due to their assumption of homoscedasticity in the error variance. The 

ARCH model works by accounting for significant autocorrelations in the squared 

residual series. 

A process {𝜀𝑡} is said to follow the ARCH (q) model if the conditional distribution of 
{𝜀𝑡} given the available information (𝜓𝑡−1) up to 𝑡 − 1 time epoch is represented as: 
 

        𝜀𝑡|𝜓𝑡−1 ∼ 𝑁(0, ℎ𝑡) and 𝜀𝑡 = √ℎ𝑡𝜈𝑡                                                             …. (1) 
 

Where 𝜈𝑡 is identically and independently distributed (IID) innovation with zero mean 

and unit variance. According to time series data, the distribution of innovation varies. 

Generalized Error Distribution (GED) is an alternative when the data does not follow 

normal. The conditional variance ℎ𝑡 of ARCH (q) model is calculated as 
 

           ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1 , 𝛼0 > 0, 𝛼𝑖 ≥ 0 ∀ 𝑖 and  ∑ 𝛼𝑖
𝑞
𝑖=1 < 1                   … (2) 

 

To achieve a reasonable level of model precision, the ARCH model necessitates 

estimating many parameters. The GARCH model is a more parsimonious version of 

the ARCH model, where the number of parameters to be estimated is smaller. The 

conditional variance is treated as a linear function of its lags in the GARCH model. 

The GARCH (p, q) model has the following form of conditional variance    

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2

𝑞

𝑖=1

+ ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑝

𝑗=1

 

        provided    𝛼0 > 0, 𝛼𝑖 ≥ 0 ∀ 𝑖, 𝛽𝑗 ≥ 0 ∀ 𝑗                                                        .…(3) 

𝛼𝑖 and 𝛽𝑗 parameters indicate how previous shocks and volatility have influenced 

current volatility, respectively. The GARCH (p, q) model is said to be weakly 

stationary if and only if  
 

         ∑ 𝛼𝑖
𝑞
𝑖=1 +  ∑ 𝛽𝑗

𝑝
𝑗=1 < 1                                                                                 ….. (4) 

The GARCH model assumes that the magnitude of the shocks determines the 

effect of volatility and that the sign of the shocks has no effect. The EGARCH model 

can help overcome this lacuna. 
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2.2 EGARCH Model 
 

The EGARCH model has been defined by describing the conditional variance in 

terms of the logarithm function. Aside from undertaking asymmetric volatility, the 

primary benefit of the EGARCH model over the GARCH model is that no restrictions 

have been levied on the model’s parameters because the positivity of the conditional 

variance is always achieved. The conditional variance for the EGARCH model has 

been defined as  

           ln ht =  α0 + ∑ βj ln ht−j
p
j=1 + ∑ (αi |

εt−i

√ht−i
| +  γi

εt−i

√ht−i
)

q
i=1                        …. (5) 

 

where, γi is the asymmetric factor that explains the asymmetric effect due to external 

shocks.  
 

2.3 The FIGARCH Model 

The FIGARCH model is useful when the volatility is symmetric and the 

volatility exhibits long-term persistence. After some algebraic operations, the 

FIGARCH model has been derived by introducing a fractional differencing parameter 

in the GARCH model. Tayefi & Ramanathan (2012) thoroughly reviewed the 

FIGARCH model. The conditional variance equation of GARCH (p,q) has been given 

by        

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1 + ∑ 𝛽𝑗ℎ𝑡−𝑗
𝑝
𝑗=1                                                      …. (6) 

 

This representation can also be expressed as an equivalent ARMA-type 

representation as 

 

         𝜀𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜀𝑡−𝑗

2𝑝
𝑗=1 − ∑ 𝛽𝑗𝑧𝑡−𝑗

𝑝
𝑗=1 + 𝑧𝑡                         …. (7) 

where 𝑧𝑡 = 𝜀𝑡
2 − ℎ𝑡 = ℎ𝑡𝑣𝑡

2 − ℎ𝑡 = (𝑣𝑡
2 − 1)ℎ𝑡  

This equation can be expressed as an ARMA (𝑚, 𝑝) process in 𝜀𝑡
2 as 

 

          [1 − 𝛼(𝐿) − 𝛽(𝐿)]𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑧𝑡                                              …. (8) 

where, 𝑚 = 𝑚𝑎𝑥{𝑝, 𝑞}. This {𝑧𝑡} process can be regarded as an innovation for 

conditional variance. From this ARMA (𝑚, 𝑝) process equation, the integrated 

GARCH (p,q) process can be defined as  
 

      [1 − 𝛼(𝐿) − 𝛽(𝐿)](1 − 𝐿)𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑧𝑡                                     …. (9) 

 

The FIGARCH model can be obtained by replacing the first difference operator 

(1 − 𝐿) with the fractional differencing operator (1 − 𝐿)𝑑, where 𝑑 is a fraction 0 <
 𝑑 < 1. Here, the long memory operator has been applied to the squared errors. Hence, 

the FIGARCH(𝑝, 𝑑, 𝑞) model can be expressed as 
    

        [1 − 𝛼(𝐿) − 𝛽(𝐿)](1 − 𝐿)𝑑𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑧𝑡                               …. (10) 
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2.4  The FIEGARCH Model 

The FIEGARCH model is effective when volatility is asymmetric and has long-

term persistence. This model has been developed by performing certain algebraic 

operations on the conditional variance equation of the EGARCH model and 

incorporating the fractional differentiation component. The FIEGARCH model, like 

the EGARCH model, has no parameter restrictions. The conditional variance ℎ𝑡 of the 

FIEGARCH (𝑝, 𝑑, 𝑞) model has been defined as follows, 
 

𝛽(𝐿)(1 − 𝐿)𝑑(ln ℎ𝑡 − 𝛼0) = 𝛼(𝐿)𝑔(𝑧𝑡−1) 

                                        ⇒ ln ℎ𝑡 = 𝛼0 +
𝛼(𝐿)

𝛽(𝐿)
(1 − 𝐿)−𝑑𝑔(𝑧𝑡−1)                    …. (11) 

where, 𝑔(𝑧𝑡−1) = 𝜃𝑧𝑡−1 + 𝛾(|𝑧𝑡−1| − 𝐸|𝑧𝑡−1|) and 𝑧𝑡−1 =
𝜀𝑡−1

√ℎ𝑡−1
 is the normalized 

innovation. 𝛽(𝐿) and 𝛼(𝐿) are polynomials in the lag operator, such that  𝛽(𝐿) =
(1 − 𝛽1𝐿) × … × (1 − 𝛽𝑝𝐿) and 𝛼(𝐿) = (1 + 𝛼1𝐿) × … × (1 + 𝛼𝑞𝐿).  

 

III 
 

EMPIRICAL ILLUSTRATION 

3.1 Data Description 
 

For empirical illustration purposes, the daily modal spot prices (Rs./q) of onion 

for three important markets, namely Delhi, Lasalgaon, and Bengaluru, have been 

collected from the Ministry of Agriculture & Farmers’ Welfare, Government of India 

for the study period of 1st January 2008 to31st December 2023. Besides the onion price 

data, the S&P 500 index (close) data for the above-mentioned period has also been 

collected from the website of Yahoo Finance. The daily series has been chosen because 

it includes many realizations over a long period, which increases the likelihood of long-

term persistence. Since the square of return has been regarded as the realization of 

volatility, the analysis has been continued with the log return series of the selected time 

series data. For a time series {𝑦𝑡} the log return series {𝑟𝑡} has been calculated as  
 

          𝑟𝑡 = ln
𝑦𝑡

𝑦𝑡−1
                                                                                               …. (12) 

 

The latest 250 realizations of the log return series of each selected time series 

have been utilised as the model validation set, while the entire preceding section of the 

series has been used as the model building set. 
 

3.2 Descriptive Statistics 

 

Table 1 shows the descriptive statistics of the selected onion price series and the 

S&P 500 index data. There are 5844 realizations for the price series and 4027 

realizations for the S&P 500 index data. The number of observations for the selected 

price series and the S&P 500 index are different. No data is available for the S&P 500 

index for Saturday and Sunday as the financial market remains closed on the weekend. 

For the onion price series, the missing observations were imputed by the last 
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observation carried forward (LOCF) method. In onion price, the Bengaluru market has 

the highest mean price, while the Lasalgaon market has the lowest. The same pattern 

has been seen for the minimum price. The maximum price in the Bengaluru market is 

significantly higher than in the Lasalgaon and Delhi markets. The Delhi market has the 

highest median price, followed by Bengaluru and Lasalgaon markets. All the chosen 

time series have a considerably high degree of variance. Lasalgaon and Bengaluru 

markets have nearly the same coefficients of variation (C.V.). The S&P 500 index has 

a much lower C.V. than the selected onion price series. The skewness and kurtosis of 

the S&P 500 index are also much lower than the other three price series. The kurtosis 

of the Bengaluru market price series is significantly higher than the others.  
 

TABLE 1: DESCRIPTIVE STATISTICS OF DAILY PRICE SERIES OF THE SELECTED ONION MARKETS 
AND S&P 500 INDEX 

 

Statistics 

(1) 

Delhi 

(2) 

Lasalgaon 

(3) 

Bengaluru 

(4) 

S&P 500 

(5) 

Mean (Rs./q) 1371.79 1350.29 1400.43 2353.16 

Median (Rs./q) 1105.00 1030.50 1100.00 2087.79 

Minimum (Rs./q) 275.00 230.50 300.00 676.53 
Maximum (Rs./q) 7650.00 8625.00 12500.00 4796.56 

S.D. (Rs./q) 892.20 1031.55 1059.42 1112.93 

CV (%) 65.04 76.39 75.65 47.30 
Skewness 2.05 2.01 3.15 0.59 

Kurtosis 5.40 5.33 17.91 -0.83 

 

Figure 1 shows the time plots of the selected time series. The time plots of all 

the price series show a similar pattern of price change. This indicates that almost the 

same set of causes has ruled the price movement throughout the country.  Massive price 

increases occurred in 2010, 2013, 2017, 2019, 2020, and 2023. The greatest ever price 

increase in history occurred towards the end of 2019. The bottom most time plot is for 

the S&P 500 index. The time plot of the S&P 500 index demonstrates a general upward 

tendency throughout time.  
 

 
Figure 1: Time Plots of the Daily Price Series of Selected Onion Markets and the 

S&P 500 Index 
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3.3 Test for Normality 

The normality of all the selected time series and the corresponding log return 

series have been tested using the Jarque-Bera test (Jarque & Bera, 1980). For this test, 

the null hypothesis is 𝐻0: The series follows normal distribution; against the alternative 

hypothesis 𝐻1: The series does not follow normal distribution. It has been seen that 

(Table 2) all the selected series and their corresponding log return series do not follow 

the normal distribution at a 1% level of significance. The kernel density plots (Figure 

2) also support the same. The log return series of the selected time series has been 

thought to follow the GED. Hence, the distribution of innovation has been considered 

as the GED. 
TABLE 2: JARQUE-BERA TEST 

 

          Series 

Market 
(1) 

Price/ Index# 

 

(2) 

Log return 

 
(3) 

Squared log return 

 
(4) 

Delhi 11201.00*** 357649.00*** 248169771.00*** 

Lasalgaon 10887.00*** 196230.00*** 185100133.00*** 
Bengaluru 87902.00*** 96426.00*** 1008184330.00*** 

S&P 500 347.53*** 24828.00*** 8035816.00*** 

***p<0.01, #for S&P 500 

 

 
Figure 2: Kernel Density Plots for the Actual Series, Log Return Series, and  

Squared Log Return Series 

3.4 Test for Stationarity 

Stationarity of the underlying time series is a prerequisite for the GARCH 

modeling. The augmented Dickey-Fuller (ADF) test (Dickey & Fuller, 1979) and the 

Phillips-Perron (PP) test (Phillips & Perron, 1988) have been used to check the 

stationarity of the selected series’ log return series and their squared log return series. 

For the ADF and PP tests, the null hypothesis is 𝐻0: The unit root is present in the time 

series; against the alternative hypothesis 𝐻1: The unit root is not present in the time 
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series. It has been seen that (Table 3) both the tests are significant, and the null 

hypothesis has been rejected for all tested series. Since all log return series met the 

stationarity assumption, no additional differentiation has been performed. 
 

TABLE 3: TEST FOR STATIONARITY  
 

Market 

(1) 

Delhi 

(2) 

Lasalgaon 

(3) 

Bengaluru 

(4) 

S&P 500 

(5) 

Series Log return Log return Log return Log return 
ADF -17.43  

(0.01) 

-16.65 

(0.01) 

-16.76 

(0.01) 

-16.06 

(0.01) 

PP -85.62 
(0.01) 

-89.42 
(0.01) 

-81.89 
(0.01) 

-72.26 
(0.01) 

Series Squared log return Squared log return Squared log return Squared log return 

ADF -15.53 
(0.01) 

-16.49 
(0.01) 

-16.34 
(0.01) 

-9.07 
(0.01) 

PP -70.44 

(0.01) 

-57.57 

(0.01) 

-74.77 

(0.01) 

-54.95 

(0.01) 

p-values are in parenthesis 
 

3.4 Test for Long Memory 
 

To check the long-term persistence among the realizations of the selected log 

return series and the squared log return series, the GPH test (Geweke & Porter-Hudak, 

1983) was performed (Table 4). The estimates of the fractional differencing parameters 

for the specified log return series are not significant. However, the estimates of the 

fractional differencing parameters are significant for their squared log return series. 

This means long-term persistence exists in the squared log return series but not in the 

log return series. As a result, the prevalence of long-term persistence in volatility has 

been verified. 
 

TABLE 4: GPH TEST 
 

Market Delhi Lasalgaon Bengaluru S&P 500 

Series 

(1) 

Log return 

(2) 

Log return 

(3) 

Log return 

(4) 

Log return 

(5) 

𝑑 -0.019 -0.061 -0.013 -0.017 

s.e. 0.056 0.057 0.052 0.075 
Z -0.338 -1.080 -0.252 -0.230 

Series Squared log return  Squared log return Squared log return Squared log return 

𝑑 0.288 0.079 0.077 0.302 

s.e. 0.069 0.020 0.026 0.074 
Z 4.173 3.898 2.946 4.084 

s.e. denotes standard error. 

 

3.6 Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

Plots 
 

The ACF and PACF plots of the chosen log return series and the ACF plots of 

the squared log return series are given in Figure 3. The dotted lines in these figures 

represent the test statistic’s 95 per cent critical values. From the ACF and PACF plots 

of the log return series, it has been seen that they are decaying at exponential rates. It 
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suggests that the mean model lacks long-term persistence. However, hyperbolic decay 

is particularly visible in the ACF plots of Delhi's squared log return series and the S&P 

500 index. Significant autocorrelations have also been seen at distant lags of the ACF 

plots of the squared log return series of the Lasalgaon and Bengaluru markets. It 

suggests the presence of long-term persistence in the volatility. The findings of the 

GPH test validate the same conclusions. 
 

 
Figure 3: ACF and PACF plots 

3.7 Fitting of Models 
 

In the first step, ARMA models with different orders have been fitted as mean 

models. The residuals have been obtained and tested for conditional heteroscedasticity 

using the ARCH-LM test. The null hypothesis for this test is 𝐻0: There is no ARCH 

effect in the residual series; against the alternative hypothesis 𝐻1: There is an ARCH 

effect in the residual series. It is observed that this test is significant for all residual 

series, and the null hypothesis has been rejected. After confirming the presence of 

conditional heteroscedasticity, GARCH, EGARCH, FIGARCH, and FIEGARCH 

models have been fitted to the residual series. Here, the GARCH and EGARCH models 

are used as a candidature for symmetric and asymmetric variance models, and 

FIGARCH and FIEGARCH models are the corresponding models’ fractionally 

integrated versions for capturing long memory in volatility. The best-performed 

ARMA order has been chosen based on minimum values of the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC). After selecting the 

appropriate ARMA order from each of the variance models for all the time series, the 

best-fitted models have been chosen based on the degree of fitting in terms of three 

popularly used error functions, namely Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). These error 

functions have been defined as 
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              𝑅𝑀𝑆𝐸 = [
1

𝑘
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑘

𝑡=1 ]
1

2⁄
                                                                    ….(13)                        

𝑀𝐴𝐸 =
1

𝑘
∑ |𝑦𝑡 − 𝑦̂𝑡|𝑘

𝑡=1                                                                                     …. (14) 

𝑀𝐴𝑃𝐸 =
1

𝑘
∑

|𝑦𝑡−𝑦̂𝑡|

𝑦𝑡

𝑘
𝑡=1 × 100                                                                           .... (15) 

where 𝑘 denotes the number of realizations used, 𝑦𝑡 is the observed value and 𝑦̂𝑡 is the 

corresponding predicted value. 

The estimated parameters of the best-fitted models have been given in Table 

5. The quasi-maximum likelihood estimation procedure has been carried out for 

parameter estimation. It has been seen that the FIEGARCH model is the best-fitted 

model for all the selected time series. From the parameter 𝛼1, it can be inferred that the 

dependencies of current volatility on the previous shock are insignificant for Delhi and 

Bengaluru markets. For the remaining two time series, they are significant. The 

parameter 𝛽1 indicates that the dependencies of current volatility on previous volatility 

are significant for all of the time series. The asymmetric parameter 𝛾 is significant for 

all of the selected time series. The fractional differencing parameter 𝑑 is also significant 

for all instances. From the significant estimates of asymmetric parameters and 

fractional differencing parameters, it can be inferred that the volatility of selected time 

series exhibits long-term persistence and is asymmetric. The plots of actual values vs. 

fitted values in the model building set and forecasted values in the model validation set  

 
TABLE 5: ESTIMATE OF PARAMETERS OF THE BEST-FITTED MODELS 

 

 Delhi Lasalgaon Bengaluru S&P 500 

Model 
 

Variable 

ARMA (2,0) -

FIEGARCH (1, 𝑑, 1) 

ARMA (1,0) -

FIEGARCH (1, 𝑑, 1) 

ARMA (1,0) -

FIEGARCH (1, 𝑑, 1) 

ARMA (1,0) -

FIEGARCH (1, 𝑑, 1) 

Mean Model 

Constant 0.000 
(0.000) 

-0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000)*** 

AR(1) 0.000 

(0.000)*** 

-0.000 

(0.000)*** 

0.001 

(0.000)*** 

-0.060 

(0.017)*** 
AR(2) 0.000 

(0.000)*** 

   

Variance Model 

Constant -0.474 

(0.085)*** 

0.066 

(0.001)*** 

-0.032 

(0.007)*** 

-0.003 

(0.979) 

𝛼1 0.519 
(0.525) 

0.164 
(0.028)*** 

0.413 
(4.829) 

-1.002 
(0.001)*** 

𝛽1 0.736 

(0.058)*** 

0.597 

(0.129)*** 

0.663 

(0.105)*** 

1.000 

(0.000)*** 

𝜃 0.148 

(0.031)*** 

0.118 

(0.003)*** 

0.122 

(0.026)*** 

0.312 

(0.032)*** 

𝛾 0.746 
(0.144)*** 

0.437 
(0.206)** 

0.329 
(0.041)*** 

-0.259 
(0.022)*** 

𝑑 0.657 

(0.076)*** 

0.396 

(0.086)*** 

0.661 

(0.067)*** 

0.792 

(0.111)*** 

***p<0.01, **p<0.05, *p<0.10 
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have been displayed in Figure 4. Fitting performances in the model building set, in 

terms of the above-mentioned error functions for the primarily selected variance 

models, have been given in Table 6. Out of the three criteria, the model that attains 

minimum values for at least two criteria is considered the best-fitted model. 

 

 
Figure 4: Plots of Actual Values Vs. Fitted Values in the Model Building Set and 

Forecasted Values in the Model Validation Set of the Finally Selected Models for 

Onion Data and S&P 500 Index 

 
TABLE 6: FITTING PERFORMANCE OF THE SELECTED MODELS IN THE MODEL BUILDING SET 

 

Market Model RMSE MAE MAPE (%) 

Delhi ARMA (0,2) -GARCH (1,1) 102.199 36.946 2.633 

ARMA (2,0) -EGARCH (1,1) 102.004 36.943 2.629 

ARMA (0,1) -FIGARCH (1, 𝑑, 1) 102.152 36.945 2.631 

ARMA (2,0) -FIEGARCH (1, 𝒅, 1) 102.013 36.941 2.624 

Lasalgaon ARMA (0,1) -GARCH (1,1) 158.309 62.433 4.067 

ARMA (1,0) -EGARCH (1,1) 159.938 59.657 3.872 

ARMA (0,1) -FIGARCH (1, 𝑑, 1) 159.937 59.652 3.867 

ARMA (1,0) -FIEGARCH (1, 𝒅, 1) 159.939 59.651 3.861 

Bengaluru ARMA (1,1) -GARCH (1,1) 152.307 55.993 3.838 

ARMA (1,1) -EGARCH (1,1) 151.481 52.643 3.631 

ARMA (0,2) -FIGARCH (1, 𝑑, 1) 152.944 54.921 3.766 

ARMA (1,0) -FIEGARCH (1, 𝒅, 1) 151.482 52.642 3.630 

S&P 500 ARMA (1,0) -GARCH (1,1) 29.028 17.618 0.834 

ARMA (1,0) -EGARCH (1,1) 29.007 17.613 0.834 

ARMA (0,1) -FIGARCH (1, 𝑑, 1) 29.032 17.619 0.834 

ARMA (1,0) -FIEGARCH (1, 𝒅, 1) 28.964 17.624 0.833 
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The forecasting performance for the model validation set has been examined 

using a rolling window forecast over 50 days, 100 days, 150 days, 200 days, and 250 

days. The forecasting performance of the selected FIEGARCH models for each time 

series on the aforementioned rolling window basis is presented in Table 7. It has been 

observed that for all the onion price series and the S&P 500 index, forecasting 

performance improves with an increase in the forecast horizons of different extend. 

This improvement is attributed to the long-term persistence of volatility. Long memory 

in volatility helps improve forecasting performance for the longer horizon.  
 

TABLE 7: ROLLING WINDOW FORECASTING PERFORMANCE OF FINALLY SELECTED MODELS IN 

THE MODEL VALIDATION SET 

Market 

(1) 

Horizon 

(2) 

RMSE 

(3) 

MAE 

(4) 

MAPE (per cent) 

(5) 

Delhi 50 22.034 5.600 0.533 

100 47.813 14.420 1.113 
150 159.800 36.321 1.930 

200 114.518 29.462 1.759 

250 104.147 16.562 1.254 
Lasalgaon 50 76.479 51.780 6.285 

100 68.312 46.760 4.862 

150 66.235 43.646 4.129 
200 155.529 72.157 7.134 

250 191.469 85.484 7.420 
Bengaluru 50 75.828 31.000 3.008 

100 69.731 29.500 2.480 

150 68.007 28.667 2.112 
200 115.786 41.250 3.902 

250 129.865 49.400 4.258 

S&P 500 50 41.027 33.191 0.831 
100 37.386 29.222 0.725 

150 33.985 26.185 0.635 

200 33.694 26.171 0.625 
250 33.301 25.622 0.606 

 

Plotting the ACF and PACF of the residuals allows us to assess the suitability of 

the best-fitted FIEGARCH models for all the chosen time series. The residuals 

exhibited no discernible systematic trend that might be further explained. Almost all 

the correlations fall within the 95 per cent confidence interval. Hence, it can be 

concluded that the best-fitted FIEGARCH models effectively captured the long-term 

persistence of asymmetric volatility present in the selected time series. 
 

IV 

 
CONCLUSIONS 

A better understanding of the fluctuations in agricultural commodity prices can 

significantly empower the farming community. Onion prices, in particular, are highly 

sensitive to controllable and uncontrollable factors. This research paper investigates 

the presence of long memory and asymmetric volatility in onion price series. Among 

the GARCH, EGARCH, FIGARCH, and FIEGARCH models, the FIEGARCH model 
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emerges as the best-fitted model for the daily modal price series of onions in Delhi, 

Lasalgaon, and Bengaluru markets, as well as for the S&P 500 index (close) data. The 

findings confirm the existence of asymmetric volatility and long-term persistence in 

volatility for these selected time series. Long-term persistence in volatility enhances 

the model’s forecasting efficiency over different extended horizons. Addressing the 

long memory property of volatility in any time series can provide valuable insights for 

understanding its behaviour, facilitating informed decision-making, and optimizing 

resource utilisation. In summary, this study highlights the presence of long memory 

and asymmetric volatility in analysing onion price dynamics. The insights gained from 

this research can aid farmers, policymakers, and market participants in making more 

informed decisions, ultimately benefiting the agricultural sector and the broader 

economy. 
 

Received April 2024.                         Revision accepted May 2024. 
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