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ABSTRACT 

 
 The study investigates the factors influencing the adoption of climate-smart agricultural (CSA) practices 

among farmers in Punjab. The study uses a multistage sampling method to select 240 farmers from different agro-

climatic zones, dividing them into adopters and non-adopters of CSA practices. Principal Component Analysis (PCA) 

was employed to develop a composite index, with Laser Land Levelling and Short Duration Varieties emerging as the 

most widely adopted practices. The adoption index showed that 50.85 per cent of farmers were medium adopters, 38.98 
per cent were high adopters, and 10.17 per cent were low adopters of CSA practices. The study used a Tobit model to 

identify key factors influencing the adoption of CSA practices. The findings reveal that age, education, farm size, 

training, access to non-farm income, and mass media exposure significantly affect the likelihood of adoption. Middle-

aged farmers with higher education levels, larger farm sizes, and more access to training and mass media are more 

inclined to adopt CSA practices. The study highlights the importance of targeted interventions, including farmer 
education and training, to enhance the adoption of climate-smart agricultural practices, which are crucial for improving 

agricultural resilience to climate change in Punjab 
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I 

 

INTRODUCTION 
 

 The increase in global surface temperatures due to human activities, 

particularly through greenhouse gas (GHG) emissions, is a major factor driving global 

warming. The Intergovernmental Panel on Climate Change (IPCC) emphasizes that 

GHG emissions continue to rise, with unequal contributions stemming from energy 

use, land use, and varying consumption patterns across different regions and 

individuals (IPCC, 2023). Climate change has had serious impacts on food and water 

security, posing a challenge to achieving the Sustainable Development Goals (SDGs). 

While agricultural productivity has increased, climate change has slowed its growth 

over the past 50 years, exacerbating financial constraints and slowing economic 

development, especially in developing countries (Asseng et al., 2011). The effects of 

climate change on food security and human health are both direct and indirect. Direct 

effects include declines in crop productivity and yields (Lobell et al., 2011), while 

indirect effects involve reduced water availability (De Fraiture and Wichelns, 2010; 

Mancosu et al., 2015; Komarek et al., 2020), increased pest invasions (Reddy, 2013), 

and lower labor efficiency (Lanfranchi et al., 2014). Changes in temperature and 

humidity also negatively impact post-harvest handling, transportation, and storage 
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(Stathers et al., 2013; Mattos et al., 2014). Rising temperatures can diminish the 

nutritional value of food crops (Da Matta et al., 2013) and lead to extreme heat stress, 

reducing the productivity and future potential of farm laborers (Watts et al., 2018). 

 These challenges are creating disruptions in global agricultural production, 

contributing to supply chain instability and worsening food security. As a result, it is 

essential to transition toward climate-resilient agriculture. Climate-smart agriculture 

(CSA) provides a framework to address these challenges by promoting increased 

productivity, enhanced resilience, and reduced GHG emissions (Kumar and Sidana, 

2019). Capacity-building programs that promote CSA help farmers adapt to and 

mitigate the impacts of climate change. Several factors influence the adoption of CSA 

practices, including social and economic variables such as education, age, gender, and 

access to extension services and credit (Deresa et al., 2009). Research shows that 

education, participation in social groups, and access to credit play significant roles in 

the adoption of CSA practices (Uddin et al., 2014; Abegunde et al., 2020). Other 

important factors include farm location, the age of the farmer, and their exposure to 

climate risks (Ojoko et al., 2017; Akrofi-Atiotianti et al., 2018; Aryal et al., 2018). 

 Punjab, known for its fertile land and abundant rainfall, has led agricultural 

productivity since the Green Revolution. Modern farming technologies, such as high-

yielding seed varieties, increased use of fertilizers, and enhanced irrigation 

infrastructure, have driven this growth. However, the sustainability of Punjab's 

agricultural success is under threat due to environmental degradation, including 

groundwater depletion and soil fertility loss (Dutta and Dillion, 2020; Nair and Singh, 

2016; Pandey et al., 2019). Additionally, climate variability has intensified these 

challenges, making resource-intensive practices even more unsustainable. 

In response to these challenges, many farmers in Punjab have adopted climate-smart 

practices such as short-duration crop varieties, improved irrigation, direct-seeded rice 

cultivation, zero-tillage drilling, and laser leveling (Kumar and Sidana, 2018). These 

practices help farmers adapt to climate change, mitigate its impacts, and achieve food 

security (Belay et al., 2023; Sahoo and Moharaj, 2022).  

 CSA, which integrates sustainable production systems with reduced emissions 

and increased resilience, is key to climate change mitigation and adaptation (Lipper et 

al., 2014). Empowering farmers through grassroots-level research, extension work, and 

community involvement is essential for building their capacity to adapt to climate 

change. The active participation of farmers in decision-making processes is critical to 

the success of climate change adaptation initiatives (Gardezi and Arbuckle, 2020). This 

study identifies the key determinants influencing the adoption of CSA practices in 

Punjab agriculture. 
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II 

 
MATERIALS AND METHODS 

(i) Selection and Description of the study area 

 Punjab, located in the northwest of India, is known for being one of the 

country's most fertile states. It spans an area of 50,362 square kilometers, with assured 

irrigation covering the cultivable land. The state is divided into three agro-climatic 

zones: the sub-mountainous zone, which accounts for 19 per cent of the total area; the 

central plain zone, making up 47 per cent; and the southwestern zone, comprising 34 

per cent of the state's geographical area.  

 A multistage sampling technique was used for the sample selection. In the first 

stage, one district from the sub-mountainous zone (Roopnagar), three from the central 

plain zone (Sangrur, Patiala, and Fatehgarh sahib), and two from the southwestern zone 

(Mansa and Sri Muktsar Sahib) were selected based on the percentage distribution of 

the area under zones in Punjab State (Figure 1). Two villages from each district were 

chosen from each district randomly in the second stage.  Later, at the third stage, a list 

of farmers adopting various climate-smart practices, i.e., direct seeding of rice, short 

duration varieties, laser land leveling, baling, use of super seeder, happy seeder, zero 

till drill in wheat sowing, was prepared for the villages in consultation with KVK 

(Krishi Vigyan Kendra)scientists and other extension specialists like agriculture 

development officers. From the list, 20 farmers from each village were selected, 

comprising both CSA adopters and non-adopters, consisting of a sample of 240 farm 

households. 
 

 

Figure 1. Distribution of Sample Respondents: Adopters and Non-Adopters 
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Personal interviews were held to collect primary data on a well-structured and 

pre-tested schedule. The information related to various aspects of a farmer like socio-

economic profile, operational holding, source of irrigation, yield, farm inputs (seed, 

fertilizer, pesticides, diesel), energy for irrigation, human labour, machine labour, and 

crop residue management practices, food consumption, and expenditure, etc. was 

collected from selected farmers. The data was collected for various climate-smart 

agriculture practices (CSAPs) adopted for the agricultural year 2021-22.  

The study found that the adopters chose more than one climate-smart practice in 

their field. The various combinations of CSAPs adopted by sample farmers were 

identified for farmers following paddy and wheat crops, respectively. There were 177 

adopters and 63 non adopters in paddy and wheat crops (Table 1).  

 
TABLE 1. DETAILS OF CLIMATE SMART AGRICULTURE PRACTICES IDENTIFIED BY SAMPLE 

FARMERS, PUNJAB, 2021-22 

 
S.No. 

(1) 

Climate Smart Agriculture Practices (CSAPs) 

(2) 

Adopters 

(3) 

Per cent 

(4) 

1 LLL 15 8.47 

2 SDV 9 5.08 

3 DSR 5 2.82 
4 DSR+SDV+B+LLL 8 4.52 

5 DSR+SDV+B+ZT+LLL 5 2.82 

6 DSR+SDV+HS+LLL 10 5.65 

7 DSR+SDV+HS+ZT+LLL 7 3.95 

8 DSR+SDV+SS+LLL 14 7.91 
9 DSR+SDV+ZT+LLL 12 6.78 

10 SDV+B+LLL 13 7.34 

11 SDV+B+ZT+LLL 18 10.17 

12 SDV+HS+LLL 19 10.73 
13 SDV+SS+LLL 16 9.04 

14 SDV+ZT+LLL 18 10.17 

15 SDV+SS+ZT+LLL 8 4.52 

 TOTAL 177 100.00 

Note: LLL= Laser land leveling, SDV= Short duration varieties, DSR= Direct seeded rice, SS= Super Seeder, HS= 
Happy Seeder, ZT= Zero Tillage, and B= Baling. 

 

Many of the sample farmers followed multiple practices. So, these have been 

distributed according to the highest area sown under each climate-smart practice (Table 

2). In our study, there were 26.25 per cent of the non-adopters in both paddy and wheat 

crop. In paddy crop, 47.08 per cent of the adopters were using short-duration varieties 

followed by laser land leveler (13.75  per cent) and direct seeded rice (12.91  per cent). 

Meanwhile, in the wheat crop, 24.58 percent have adopted super seeder for sowing, 

followed by zero tillage (22.50  per cent) and happy seeder (11.67  per cent). 
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TABLE 2. DISTRIBUTION OF FARMERS AMONG CSA PRACTICES ADOPTED UNDER PADDY AND 

WHEAT CROP IN PUNJAB, 2021-22 

CSA practices adopted in paddy crop CSA practices adopted in wheat crop 

Technology 

(1) 

Frequency 

(2) 

Percentage 

(3) 

Technology 

(4) 

Frequency 

(5) 

Percentage 

(6) 

Non adopters 63 26.25 Non adopters 63 26.25 

Adopters Adopters 

SDV 113 47.08 SS 59 24.58 

LLL 33 13.75 ZT 54 22.50 

DSR 31 12.91 HS 36 15.00 

   B 28 11.67 

Total 240 100.00 Total 240 100.00 

(ii) Extent of Adoption of Climate Smart Agriculture Technologies 
 

Adoption is the choice to fully utilize an innovation as the best course of action. 

Adoption has been defined as people's willingness to use the advised climate-smart 

technologies in their industry. The percentage of adopted practices represents the extent 

of adoption for climate-wise practices. Responses regarding the extent of adopting a 

list of suggested practices by the implementing agency were obtained. The CSA 

villages adopted seven technologies. These include direct seeded rice, laser land 

leveling, short-duration varieties, zero tillage, happy seeder, super seeder, and baling. 

Farmers' adoption of the CSA non-adopters sample was insignificant and was not used 

for further analysis. The extent of adoption of climate-smart technologies was 

calculated by using the formula: 

Extent of Adoption of CSA technology =  
Technologies being practiced

Technologies demonstrated 
 × 100 

(iii) Composite Index of CSA Technologies 
 

The recommendations of subject matter experts and Principle Component 

Analysis (PCA) were considered when constructing a composite index. A set of Kth 

components accounting for 100 per cent of the variation across all proposed technology 

components was considered. In a correlation matrix, where the columns represent 

Eigen vectors and the rows are variables, the weight (wi) coefficients of technological 

components, such as, are calculated as follows: 

𝑊𝑖 =
𝑀𝑖

∑ 𝑀𝑖
 

Where,  

           𝑊𝑖 = Weight or coefficient of component of technology 

          𝑀𝑖   = Maximum element in ith row 

          ∑ 𝑀𝑖  = Sum of maximum element in ith row 

The required linear function for deriving a composite index will be,  

𝑆𝑖 =  𝑊1𝑋1 + 𝑊2𝑋2 + ⋯ + 𝑊𝑛𝑋𝑛 

 Where, 𝑆𝑖 is the Composite index score, and 𝑋𝑖’s are the Adoption scores for individual 

CSA technology. 
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This provides an adoption index of all CSA technologies for each cultivator. The 

composite index obtained in the process lies between 0 and 1 with the help of the cubic 

root method. The composite scores of farmers were classified as low level (< 0.51), 

medium level (0.56- 0.65), and high level (> 0.66) of adoption by using the cumulative 

cube root method. 
 

(iv) Tobit Model 
 

James Tobin originally developed the Tobit model as an extension of the probit model 

(Gujarati, 2004). This model, often referred to as a censored regression or limited 

dependent variable model, incorporates both data at the threshold and above the 

threshold in its estimation. The Tobit model is frequently applied to examine awareness 

and adaptation to climate change and to assess the hypothesis related to farm 

technology adoption. A key aspect of the Tobit model is that it captures both the 

decision to adopt and the degree of adoption (Tobin, 1958). In its simplest form, the 

Tobit model is described as follows (Greene, 2003). 

𝑦𝑖
∗ =  𝑥𝑖 

∗𝛽 +  𝑒𝑖(1)                                                                                                                                𝑦𝑖 =
 𝑦𝑖,    

∗ 𝑖𝑓 𝑦𝑖 
∗ > 𝛾(2)                                                                                                                                  𝑦𝑖 =

0, 𝑖𝑓 𝑦𝑖 
∗  ≤ 𝛾                                                                                                                     (3) 

          where 𝑦𝑖
∗ is the dependent variable, which is measured using a latent variable 

𝑦𝑖 for positive values and censored otherwise,  𝛽 is a vector of estimable parameters, 

𝑥𝑖 
∗ is a vector of explanatory variables, 𝑥𝑖   

∗ 𝛽 is a product of the vector of parameter and 

explanatory variable, 𝑒𝑖 is a normally and independently distributed error term with 

zero mean and constant variance  𝜎2 , and N is the number of observations. Adopted 

from Carson and Sun (2007), the likelihood function for the model implied by Eqs. (1) 

and (2) is written as 

𝐿 (𝛼, 𝛽, 𝜎) = ∏ ∅(
𝛾−𝛼−𝑥𝑖𝛽

𝜎

𝑛0
𝑖=1 ) ∏

1

𝜎
𝑛
𝑖=𝑛0+1

∅(
𝑦𝑖 –𝛼−𝑥𝑖𝛽

𝜎
)                                                           (4) 

 

III 
 

RESULTS AND DISCUSSION 
 

i) Descriptive Statistics 

The summary statistics of the variables used in the study have been presented 

in Table 3. The age of the farmer, a quantitative variable measured in years, has been 

considered a determinant of the adoption of modern technology, and the mean age is 

48.34 years (Tiwari et al., 2008; Aryal et al., 2018; Kumar & Kaur, 2018; Mango et al., 

2017; Amadu et al., 2020). The education level of farmers has been considered as 

another variable and is obtained by the number of years that he has attended school. 

Education increases his ability to receive, process, and use information relevant to 

adopting a new technology (Mango et al., 2017; Amadu et al., 2020; Sardar et al., 

2020). We also expected a positive association with adopting climate-smart 

technologies, and the average number of years of education is 9.30. The dependency 

ratio is the ratio of the number of family members below the age of 15 and above 65 

(non-working). 
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TABLE 3. DESCRIPTION OF THE EXPLANATORY VARIABLES USED IN TOBIT MODEL 

Explanatory variables 
(1) 

Description 
(2) 

Mean 
(3) 

Max 
(4) 

Min 
(5) 

Age (years) Continuous 48.34 72 23 

Education (years) Continuous 9.30 17 0 

Dependency ratio Continuous 0.54 2 0 

Operational holding size (ha) Continuous 5.90 49.29 0.81 
Total livestock unit (numbers) Continuous 5.37 17 0 

Trainings and exposure visits 

(numbers) 

Continuous 0.63 3 0 

Other qualitative variables Number Per cent 

Access to non-farm income Dummy = 1 if the farmer has access to credit;  56 23.33 
0 = otherwise 184 76.67 

Mass media exposure Low=1 169 70.42 

Medium=2 60 25.00 

High=3 11 4.58 

The mean dependency ratio in this study is 0.54. Research findings indicate that 

farm size has both positive and negative impacts on technology adoption, suggesting 

that the relationship between farm size and adoption is not straightforward (Bradshaw 

et al., 2004). Vijayasarathy and Ashok (2015) observed that smaller farms might be 

more inclined to adopt technologies requiring intensive management. This study 

anticipates either a positive or negative correlation between farm size and adoption, 

with an average operational holding of 5.90 hectares. 

Livestock ownership has been found to positively influence natural resource 

conservation (Willy and Holm-Müller, 2013). However, Adimassu et al. (2016) noted 

that the effect of livestock holding on Climate-Smart Agriculture (CSA) practices is 

inconsistent. This may be because some farmers rely heavily on livestock for their 

income, reducing their motivation to adopt CSA practices. Training and exposure visits 

are crucial for building farmers' capacity, increasing interest in adaptation technologies, 

and enhancing technical abilities (Barrett et al., 2002; Sidibé, 2005). The adoption of 

CSA measures is expected to be positively related to the number of training sessions 

attended through extension services and Krishi Vigyan Kendras (KVKs). 

Higher income allows farmers to invest in capital-intensive and labor-saving 

agricultural technologies, which positively impacts the adoption of CSA practices 

(Huang et al., 2020). Off-farm income, which was available to 23.33 per cent of the 

farmers in the study, helps farmers overcome financial constraints and increases the 

likelihood of CSA implementation. Mass media also plays an essential role in quickly 

disseminating information to farmers, helping them become aware of new 

technologies. In this study, farmers' exposure to mass media—such as radio, television, 

printed farm literature, and social media—was categorized into low, medium, and high. 

Seventy per cent of the farmers were classified as having low exposure to mass media. 
 

ii) Development of Technology Adoption Index for Adoption Of CSA Practices  
 

The overall weighted adoption index for each farmer was calculated using 

Principal Component Analysis (PCA). PCA is an objective tool that assigns higher 

weights to technologies that significantly contribute to the variation in the adoption 
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levels of the farmers in the study. The principal components derived from the analysis 

were utilized to determine the weights. The highest principal component for each 

technology was selected based on the results, and the ratio of each maximum principal 

component to the total was used to calculate the actual weight. This weight was then 

employed to compute each farmer’s adoption score. Among the technologies adopted 

by farmers, laser land leveling received the highest weight of 0.250, followed by short-

duration varieties at 0.232. Baling and the happy seeder recorded the lowest weights, 

at 0.070 and 0.079, respectively (Table 4). 
 

TABLE 4. COMPUTED WEIGHTS FOR CSA TECHNOLOGIES 

 

Sr. No. 

(1) 

CSA Technology 

(2) 

Weights 

(3) 

1 Laser Land Levelling (LLL) 0.250 
2 Short Duration Varieties (SDV) 0.232 

3 Direct Seeded Rice (DSR) 0.137 

4 Zero Tillage (ZT) 0.136 

5 Super Seeder (SS) 0.096 
6 Happy Seeder (HS) 0.079 

7 Baling (B) 0.070 

 

At an overall level, laser land levelling had a maximum weight of 0.250, 

followed by short-duration varieties, i.e., 0.232. Baling and happy seeder obtained the 

least weight of 0.070 and 0.079, respectively (Table 4). The technology development 

index for each sample farm is calculated based on weights obtained for each CSA 

technology. The technology adoption index ranged from 0 to 1, with 0 indicating no 

adoption while 1 means adoption of all demonstrated technologies. The category-wise 

distribution in Figure 2 revealed that the maximum percentage of adoption was 

observed in the medium adopter category (50.85 per cent), followed by high adopter 

category (38.98 per cent) and low adopter category (10.17 per cent).  

 

 
Figure 2. Category Wise Technology Adoption in Punjab 
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So, to maximize the adoption rate, it is essential to identify the significant factors 

that facilitate the adoption of CSA practices. Therefore, the Tobit model was used to 

identify the determinants of adoption. 

iii) Factors Affecting the Adoption of Climate Resilient Technologies  

 The household socio-economic characteristics, operational farm size, 

number of trainings attended, access to non-farm income, and exposure to mass 

media were taken into account, and the results of the Tobit model are displayed 

in Table 5. The likelihood ratio statistics and Wald Chi-square test demonstrated 

that the explanatory variables collectively influenced the intensity of adoption. 

 The relationship between age and the adoption of climate-smart agricultural 

(CSA) practices was found to be significantly negative, indicating that middle-

aged farmers were more likely to adopt CSA practices. Education showed a 

significant and positive effect, playing a crucial role in the adoption of CSA 

practices. Educated farmers tend to have better access to information and are 

more capable of evaluating the economic and technical feasibility of 

conservation measures (Mango et al., 2017). Additionally, training and 

exposure visits were found to significantly and positively influence adoption 

intensity (Kumar, 2020). After receiving training on CSA technologies, farmers 

gained a better understanding of the importance of adopting multiple 

technologies simultaneously. Access to non-farm income and mass media 

exposure also had positive and significant effects on the intensity of CSA 

adoption, as indicated in Table 5. 

TABLE 5. FACTORS AFFECTING ADAPTATION DECISION OF CSA PRACTICES: ESTIMATED 
COEFFICIENTS OF THE TOBIT MODEL 

S.No. 

(1) 

Variables 

(2) 

Coefficient 

(3) 

Std. error 

(4) 

p value 

(5) 

1. Constant 0.44** 0.15 0.003 

2. Age -0.01*** 0.01 0.000 
3. Education 0.02** 0.01 0.017 

4. Dependency ratio 0.01 0.04 0.805 

5. Operational farm size 0.02*** 0.01 0.000 

6. Trainings attended 0.13*** 0.03 0.000 

7. Total livestock unit -0.01 0.01 0.600 
8. Access to non-farm income 0.12** 0.04 0.026 

9. Mass media exposure 0.08** 0.04 0.026 

Log likelihood     -91.32 

Pseudo R2           0.4084 

LR chi-square     126.08 
p value > chi square  0.4084                                                                                                                  

Note: ***, ** and * denote significance at 1, 5 and 10 per cent levels, respectively  
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iv) Complementary or Trade Off Among the Multiple CSA Practices 

 

Adopting one technology affects the adoption of another technology, implying 

that there could be complementarities or trade-offs among the adoptions of multiple 

CSA practices. It is evident from Table 6 that laser land levelling has a positive 

correlation with all other technologies at a significant level of 1 per cent. Similarly, 

SDV has a significant positive correlation at 1 per cent. Studies have also mentioned 

that laser land levelling enhances the yield of the crops, and more than 70 per cent of 

the farmers in the study had adopted LLL. Farmers were either choosing super seeder 

or happy seeder for wheat sowing, which showed a negative correlation with each 

other.  
 

TABLE 6. CORRELATION COEFFICIENTS AMONG THE ADOPTION OF CSA PRACTICES 

 

CSA 

Practices 
(1) 

LLL 

 
(2) 

SDV 

 
(3) 

DSR 

 
(4) 

SS 

 
(5) 

ZT 

 
(6) 

HS 

 
(7) 

B 

 
(8) 

LLL 1.000       

SDV 0.8205*** 1.000      

DSR 0.3636*** 0.2066*** 1.000     

SS 0.3598*** 0.2602*** 0.1414*** 1.000    
ZT 0.3906*** 0.3613*** 0.2762*** -0.0452 1.000   

HS 0.2827*** 0.2766*** 0.2201*** -0.2614*** -0.0752 1.000  

B 0.3099*** 0.2492*** -0.0415 0.0092 -0.0956 -0.1672*** 1.000 

Note: ***, ** and * denote significance at 1, 5 and 10 per cent levels, respectively  

v) Reasons for Climate Change 

The sample farmers were asked to specify the reasons to enhance the adoption 

of new technologies. Their responses were gathered and transformed into scores, 

subsequently ranked using the Garrett ranking method, presented in Table 7. The 

findings demonstrated that the leading driver for adopting climate-resilient 

technologies was the excessive depletion of natural resources. The results revealed that 

the over-exploitation of natural resources was the prime reason for adopting climate-

resilient technologies, followed by more areas under paddy cultivation, as paddy crops 

are one of the major water-guzzling crops, resulting in groundwater depletion. More 

use of chemical fertilizer ranked as the fifth reason for adopting climate-smart 

practices, with Garret’s score of 40.29. 

 

vi) Consequences of Climate Change  

  The effects of climate change are wide-ranging and impact various aspects of 

life. Data from Table 7 highlights the scope of these consequences. The most 

significant impact, with the highest average Garrett score of 65.92, is the negative 

effect on human health. This includes issues such as heat-related illnesses, respiratory 

problems from air pollution, and the spread of vector-borne diseases. The second-

highest ranked consequence is the increase in livestock diseases, with a Garrett score 
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of 62.22. This underscores the vulnerability of livestock to changing climate 

conditions, making them more prone to infections and diseases. The decline in 

predatory bird populations, including species like owls, falcons, hawks, and eagles, is 

identified as the third major consequence of climate change by the sample farmers. The 

reduction in these populations disrupts ecosystem balance. Climate change is also 

linked to more frequent and intense natural disasters, such as hurricanes, floods, and 

droughts, which sample farmers ranked as the fourth major consequence. These 

disasters have severe impacts on communities, ecosystems, and economies. Shifts in 

temperature and precipitation patterns can negatively affect crop yields, reducing 

agricultural productivity. This poses a threat to food security and livelihoods, 

particularly in agriculture-dependent regions. Additionally, changes in precipitation 

patterns can lead to decreased availability of clean drinking water, impacting both 

human populations and ecosystems that depend on consistent water sources. 

 
TABLE 7. DISTRIBUTION OF SAMPLE RESPONDENTS ACCORDING TO THEIR PERCEIVED REASONS 

AND CONSEQUENCES OF CLIMATE CHANGE IN PUNJAB, 2021-22 

 

S.No. 
(1) 

Particulars 
(2) 

Average Garrett’s Score 
(3) 

Rank 
(4) 

Reasons 

1. Deforestation  51.27 III 

2. More use of chemical fertilizer  40.29 V 

3. Over exploitation of natural resources  58.92 I 

4. More area under paddy cultivation  55.52 II 

5. More use of fossil fuel  43.50 IV 

Consequences 

1. Human health affected  65.92 I 

2. Decline in crop yield (i.e., foodgrains and vegetables)  33.92 V 

3. Decreased drinking water availability  27.67 VI 

4. Increase in the number of diseases to livestock  62.22 II 

5. Frequent occurring of natural calamities  53.49 IV 

6. Extinction of predatory birds (i.e., owls, falcons, hawks, eagles, 
etc.)  

56.68 III 

 

vii) Reasons for Adoption of Climate Smart Practices 
 

The sample farmers were asked to articulate the factors that motivated them to 

adopt climate-smart practices. These specific reasons were carefully collected from the 

households, and the outcomes are presented in Table 8, utilizing the Garrett score 

methodology. The most prominent reason for adopting climate-smart technologies, 

with the highest average Garrett score (45.93), was the elevated expense associated 

with deepening borewells. This reflects farmers' challenges in maintaining access to 

groundwater for irrigation, which often involves significant costs for borewell 

maintenance and deepening. The second reason for adopting CSA practices was the 

expectation of achieving high crop yields. This indicates that farmers are inclined to 

embrace technologies that promise enhanced productivity to meet growing demands 

for agricultural products. Effectively using agricultural inputs, such as fertilizers, 
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pesticides, and water, is critical in achieving optimal crop outcomes. This aspect ranks 

third in motivating farmers to adopt climate-smart practices, underscoring the need for 

resource-efficient approaches. Labour scarcity, which ranks fourth, showcases farmers' 

challenges in accessing sufficient labor for various farming activities. This issue has 

led farmers to adopt technologies that can help alleviate the dependence on manual 

labor and improve operational efficiency. 
 

TABLE 8. REASONS FOR ADOPTION OF CLIMATE SMART PRACTICES IN PUNJAB, 2021-22 

S.No. 

(1) 

Particulars  

(2) 

Average Garrett’s Score 

(3) 

Ranks 

(4) 

1. High cost of deepening borewell  45.93 I 

2. Expectation of  high yield  43.99 II 

3. Labour scarcity  38.33 IV 
4. Effective utilization of inputs  39.30 III 

 

These results emphasize the economic, productivity, and resource management 

considerations that drive the adoption of climate-resilient technologies among Punjab 

farmers in the specified period. The prioritization of these factors underscores the 

significance of addressing challenges related to input costs, labour availability, and 

yield enhancement in agricultural practices. 
 

IV 

 
CONCLUSIONS AND POLICY IMPLICATIONS 

 

 The study concludes that adopting climate-smart agricultural (CSA) practices 

in Punjab is significantly influenced by various socio-economic factors, including age, 

education, farm size, training, access to non-farm income, and mass media exposure. 

Middle-aged farmers with larger farms, higher education levels, and access to training 

and non-farm income are likelier to adopt CSA practices such as Laser Land Levelling 

and short-duration varieties. The findings indicate that targeted interventions are 

necessary to increase awareness and adoption of CSA practices, which are vital for 

building resilience against climate change in Punjab's agriculture sector. From a policy 

perspective, the study emphasizes the need to strengthen extension services and farmer 

education programs to promote CSA adoption. Policymakers should focus on 

increasing farmer training and exposure to climate-smart technologies, mainly through 

Krishi Vigyan Kendras (KVKs) and other agricultural extension programs. 

Additionally, mass media should be utilized more effectively to disseminate 

information about the benefits of CSA practices. Financial support policies, such as 

subsidies or low-interest loans for adopting CSA technologies, can also incentivize 

adoption, particularly among smallholder farmers. Particular attention should be given 

to marginalized groups, including farmers with smaller landholdings or limited access 

to education, to ensure equitable access to these technologies. By implementing these 

policy measures, the agricultural sector in Punjab can improve its sustainability, 

productivity, and resilience to climate change, ultimately enhancing food security and 

farmer livelihoods 
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