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ABSTRACT 

 

The importance of an accurate assessment of India’s pulse supply responsiveness cannot be overstated, 

especially given the vital role of pulses in agricultural sustainability and human well-being, yet a dismal per capita 
availability figure; hence, the case for comprehensively revisiting pulse supply responsiveness for asymmetry. Recent 

econometric research has prioritized the analysis of non-stationarity alongside nonlinearity, acknowledging the 

ubiquitous influence of asymmetry and its intrinsic value. The present study examines asymmetry in the supply response 

of chickpea, a representative pulse crop, in Madhya Pradesh, a leading pulse-producing state in India, from 1970–71 to 

2015–16, when the pulse sector lay virtually dormant. It detects the presence of asymmetry in the area and yield 
responses to price and selected non-price variables through ECM-based estimations of the ARDL and NARDL models, 

each with two specifications, in the context of dynamic panel data analysis through the PMG estimator. To the authors’ 

knowledge, this is the first NARDL-based supply response study about Indian agriculture – some applications exist that 

do not include the price variable; thus, they do not fit squarely within the framework of supply response studies. The 

NARDL estimation results indicate that the percentages of SR/LR asymmetric responses per model to the decomposed 
variables (partial sum processes of positive and negative changes) across the area and yield response models range from 

57% to 75%. These findings offer fresh perspectives on pulse supply responsiveness, which could significantly inform 

policymaking in this domain. 
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I 
 

INTRODUCTION 
 

India’s agricultural sector is of paramount importance to the Indian economy. 

Not only do about 55% of the country’s population depend on it as the primary source 

of their livelihood (IBEF, 2023), but also its share of the workforce, which has been on 

the increase since 2018–19, stands at 45.5% Over the period 2019–23, this sector grew 

at a compound annual growth of 4%, accounting for about 15% of the Gross Value 

Added for 2023 (NABARD, 2023). Foodgrain production reached a record high of 

about 330 million tonnes in 2023 (GoI, 2024); however, domestic demand exceeds 

production, so India relies on food imports, including pulses.  

India’s pulse sector lay dormant from 1950–51 to 2009–10, with annual 

production mostly between 10 and 15 million tonnes. Boosted by the ongoing National 

Food Security Mission (NFSM), it rose moderately over the following quinquennium 

but dipped to about 16 million in 2015–16.  A subsequent surge saw production exceed 

23 million tonnes annually, except for 2018–19, soaring to a record 27-plus million in 

2021–22. Nevertheless, it declined over the next two years to about 26.1 and 24.5 
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million, with chickpea production declining from about 13.5 to 11.6 million tonnes 

(GoI, 2024).  

Considering the contribution of pulses to food security and nutrition, there is a 

need for a better understanding of the quantitative dimensions of pulse supply response. 

The present study analyses chickpea production response in the leading pulse-

producing state of Madhya Pradesh for the period 1970–71 to 2015–16 when pulse 

production remained sluggish. Its specific objectives are to: (i) study the area and yield 

responses of chickpea to price and selected non-price variables, (ii) estimate the short-

run and long-run elasticities of the area and yield responses, and (iii) check these 

responses for symmetry. 

 
II 

LITERATURE REVIEW 

 Past studies on pulse supply response in India ignore asymmetric relationships, 

implicitly assuming supply response to be symmetric or reversible. Economists have 

long known that many macroeconomic variables and processes are nonlinear (Shin et 

al., 2013). However, early applications of the irreversibility concept in agricultural 

supply response are limited. The few existing studies (e.g., Jaforullah, 1993; Traill et 

al., 1978) seem to reveal asymmetric area responses to price changes, with acreage 

responding more to a price rise than a price fall (Mamingi, 1997). Recently, the 

modelling of asymmetry has been engaging the increasing attention of researchers in 

different domains, with applications in agriculture examining the effects of non-price 

factors on crop yield or production. 

Agricultural supply response has conventionally relied on the seminal Nerlove 

(1958) model, but more recent work has used the cointegration and error correction 

framework. Investigating the applicability of the error correction specification to 

agricultural supply modelling, Hallam and Zanoli (1993) document its superiority over 

the Nerlovian partial adjustment model. Examples of its use in modelling supply 

response in Indian agriculture include Paltasingh and Goyari (2013) and Savadatti 

(2018). The error correction model (ECM) is derivable as a simple reparameterization 

of a general autoregressive distributed lag (ARDL) model (Hendry et al., 1984). 

 

2.1   The Nonlinear Autoregressive Distributed Lag (NARDL) Model  
 

 Shin et al.’s (2014) NARDL model is an asymmetric extension of the ARDL 

model developed by Pesaran and Shin (1998, as cited in Shin et al., 2013) and Pesaran 

et al. (2001), which has proven highly influential as the cornerstone of several 

significant methodological extensions (Cho et al., 2020). The NARDL model captures 

short- and long-run asymmetric effects via decomposing the explanatory variables into 

partial sum processes of positive and negative changes, providing a more nuanced 

understanding of how variables interact over time. The formulation of the model builds 
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around the following asymmetric long-run regression between scalar I (1) variables 𝑦𝑡 

and 𝑥𝑡: 

           𝑦𝑡 = 𝛽+𝑥𝑡
+ + 𝛽−𝑥𝑡

− + 𝑢𝑡,                                                                         …. (1)            

           ∆𝑥𝑡 =     𝑣𝑡,                                                                                                …. (2)   

where 𝑥𝑡
+ and 𝑥𝑡

− represent the partial sum processes of positive and negative changes 

in 𝑥𝑡, which is decomposed as 𝑥𝑡 = 𝑥0 (i.e., random initial value) + 𝑥𝑡
+ + 𝑥𝑡

−: 

           𝑥𝑡
+ = ∑ ∆𝑥𝑗

+𝑡
𝑗=1  = ∑ 𝑚𝑎𝑥𝑡

𝑗=1 (∆𝑥𝑗, 0),                                                     ….  (3)  

           𝑥𝑡
− = ∑ ∆𝑥𝑗

−𝑡
𝑗=1  = ∑ 𝑚𝑖𝑛𝑡

𝑗=1 (∆𝑥𝑗, 0).                                                      …. (4)     

This subsection excludes full representation of the model due to space 

limitations. Formulating the asymmetric model from the symmetric one is 

straightforward, as seen in Eqs (5) and (8) below.  

The NARDL model admits three general forms of asymmetry – long-run or 

reaction asymmetry, impact asymmetry and adjustment asymmetry associated 

respectively with inequalities of 𝛽+ and 𝛽−, the coefficients of ∆𝑥𝑡
+ and ∆𝑥𝑡

−, and the 

patterns of adjustment traced by the dynamic multipliers. As such, asymmetries in the 

adjustment patterns might be observed even with little evidence of the other kinds of 

asymmetry. The model’s desirability, as the authors note, is threefold – the single-step 

estimation of the ECM, with a better performance in small samples, particularly 

regarding the cointegration tests’ power; the simultaneous estimation of both long- and 

short-run asymmetries in a tractable and straightforward manner, with simple testing 

for symmetry restrictions; and the intuitive and easy evaluation of the transition from 

the short to the long run.  

Turning to the application of the NARDL model in agriculture, three studies, 

all in a time series context, are briefly reviewed here. Abbas et al. (2022) investigate 

the impacts of average maximum and minimum temperatures, rainfall, total area sown, 

and total irrigated and unirrigated acreages on the production of rice in the Central, 

Southern and Western regions of Punjab, Pakistan, using both ARDL and NARDL 

models. The NARDL analysis reveals asymmetric effects of temperature, rainfall and 

total area sown. Addresssing selected principal crops of Odisha, including gram, 

Senapati (2022) estimates the overall effect of rainfall, temperature, irrigation, ground 

frost frequency, and crop evapotranspiration on their yields for the period 1950–2017, 

with rainfall as the chief concern. The findings indicate an overall asymmetric effect 

of rainfall on the yield but a minimal role of the other variables. In the case of gram, 

the implication is that whereas the yield is unresponsive to rainfall increases, a 1% 

decrease reduces acreage allocated to the crop by about 0.81%, ceteris paribus, in both 

the short and long runs. The third study, by Mujtaba et al. (2023), investigates the 

asymmetric response of India’s rice, wheat, and maize yields for the period 1980–2017 

to temperature, rainfall, CO2 emissions, and fertilizer consumption. The empirical 

findings support asymmetry in the short and long runs, indicating statistically distinct 
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impacts of positive and negative changes in the relevant variables, with diverse impacts 

of temperature, CO2 emissions and fertilizer consumption. 

Although the above NARDL applications do not strictly constitute supply 

response studies, their findings suggest the presence of asymmetry in pulse supply 

response. The present study bridges this research gap. 

 
III 

  

METHODOLOGY 
 

This study focuses on Madhya Pradesh, whose contribution to the area and 

production of chickpea in India over the study period (1970–71 to 2015–16) averages 

32.30% and 34.93%, respectively. Data sources include the ICRISAT district-level 

database, annual publications of ‘Farm Harvest Prices of Principal Crops in India’ from 

the Directorate of Economics and Statistics, Ministry of Agriculture and Farmers 

Welfare, the Economic and Political Weekly Research Foundation (EPWRF) India 

Time Series dataset on Price Indices, and the India Water Resources Information 

System portal (http://www.indiawris.gov.in). The study covers 29 districts and uses 

data on area, yield and farm harvest price (FHP) of pigeon pea, gross cropped area, 

gross irrigated area, total fertilizer (NPK) consumption, monthly rainfall and 

temperature. The EPWRF’s CPI-AL data, utilized to construct relative price and risk, 

represent the average of CPI-AL values for January and February in a given year as 

farmers generally dispose of their produce within six to eight weeks of the 

commencement of the harvest season (Durga & Swaminathan, 2018). Furthermore, the 

study captures the effects of government intervention on the NFSM post-2010 using a 

binary variable, which is assumed to impact area or yield in the short run but not to 

affect their equilibrium paths.              

The reference period for the study, 1970–71 to 2015–16 (46 years), reveals 

many missing values for FHP and rainfall data. Filled in missing price values constitute 

either borrowed data or values imputed using the exponential moving average 

approach. However, districts with over 20% of FHP data missing for the study period 

or with such missing values for five or more consecutive years ending 2018 do not 

form part of the study. 
  

3.1   Conceptual Models                                                                                            

Each area and yield response analysis employs two ARDL and two NARDL 

model specifications (I and II). The reason for testing two different specifications is to 

accommodate the possibility that infrastructure and technology variables in the same 

model may face multi-collinearity issues. The NARDL models include the same 
underlying variables as the ARDL models and, except for infrastructure, technology 

and irrigation, owing to their predominantly positive growth rates, decompose each 

into partial sum processes of positive and negative changes. 

http://www.indiawris.gov.in/
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3.1.1   The ARDL Area Response Models                                                                      

         

This study formulates the ARDL area response model I as  

 ∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡 = 𝛽0𝑖 + 𝛽1𝑖 𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−1 + 𝛽2𝑖 𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−1 + 

𝛽3𝑖 𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−1 + 𝛽4𝑖 𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−1  

                           + 𝛽5𝑖 𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−1 + ∑ λ𝑖𝑗  ∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−𝑗
𝑁1
𝑗=1  + 

∑ 𝑎𝑖𝑗  ∆𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−𝑗
𝑁2
𝑗=0  + ∑ 𝑏𝑖𝑗  ∆𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−𝑗

𝑁3
𝑗=0  + ∑ 𝑐𝑖𝑗  ∆𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−𝑗

𝑁4
𝑗=0  + 

∑ 𝑑𝑖𝑗  ∆𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−𝑗
𝑁5
𝑗=0  + 𝐷_𝑛𝑓𝑠𝑚𝑡  + 𝜇𝑖 + 𝜀𝑖𝑡 ,                                                       ….  (5) 

where the symbols utilized, other than the parameters to be estimated, are defined as 

follows:  

∆ and 𝑙𝑛      ≡   the forward difference operator and the natural logarithm        

𝑖 and t          ≡   subscripts for the cross-section and production period to which a 

variable refers,  

                          𝑡 differing between variables: [𝑖 = 1, 2, . . ., N ; t = 1, 2, . . ., T ] 

(𝑐𝑝ℎ)𝑖,𝑡       ≡   chickpea acreage in the current period in ‘000 hectares 

(𝑟𝑓ℎ𝑝)𝑖,𝑡     ≡   an index of the previous period’s FHP of chickpea relative to the CPI-

AL:  

                          [
The previous period’s FHP in Rs/qtl

The previous period’s CPI−AL  average for Feb−Mar
 × 100]         

(%𝑔𝑖𝑎)𝑖,𝑡    ≡   the previous period’s percent gross irrigated area under all crops as a 

proxy for infrastructure: [ 
GIA

GCA
 × 100],                   

(𝑟_𝑝𝑠)𝑖,𝑡      ≡   the pre-sowing rainfall in mm: June – September 

(𝑐𝑣𝑟𝑟)𝑖,𝑡      ≡   coefficient of variation of the relative gross returns from chickpea 

relative to the     

                         CPI-AL over the three preceding years as an index of the risk 

associated with its        profitability:  

                         [Relative gross returns = 
Yield (kg/ha)× 

FHP (Rs/q)

100

CPI−AL (Feb−Mar avg.)
 × 100 = Relative 

FHP × 
Yield (kg/ha)

100
] 

𝑁superscript ≡   the optimal lag order 

   𝐷_𝑛𝑓𝑠𝑚𝑡     ≡   a dummy variable for government intervention in respect of NFSM 

post-2010  

                                 [𝐷_𝑛𝑓𝑠𝑚𝑡 equals 0 when 𝑡 < 2010 and 1 when 𝑡 ≥ 2010]                        

   𝜇𝑖 and 𝜀𝑖,𝑡     ≡   the group-specific effect and the error term 
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In this ‘double-log’ functional form, the coefficients of the differenced terms 

represent the short-run elasticities. The corresponding long-run slope coefficients 

(elasticities) are obtained by dividing the coefficients of the lagged levels of the long-

run forcing variables by that of the lagged dependent variable – in the long run, all the 

differenced terms of the long-run forcing variables equal zero.  

        The error correction reparameterization of eq. (5) is:   

∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡 = 𝛿𝑖𝜐𝑖,𝑡−1 + ∑ λ𝑖𝑗 ∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−𝑗
𝑁1
𝑗=1  + ∑ 𝑎𝑖𝑗 ∆𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−𝑗

𝑁2
𝑗=0   

             + ∑ 𝑏𝑖𝑗 ∆𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−𝑗
𝑁3
𝑗=0  + ∑ 𝑐𝑖𝑗 ∆𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−𝑗

𝑁4
𝑗=0  

             + ∑ 𝑑𝑖𝑗 ∆𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−𝑗
𝑁5
𝑗=0  + 𝐷_𝑛𝑓𝑠𝑚𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡,                                 ….(6)   

where  

         𝜐𝑖,𝑡−1 = 𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−1 − 𝜙0𝑖 − 𝜙1𝑖 𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−1 − 𝜙2𝑖 𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−1                                                                      

− 𝜙3𝑖 𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−1 − 𝜙4𝑖 𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−1                                                    ….  (7) 

is the error correction term capturing the long-run cointegration relationship (which 

holds at equilibrium) and 𝛿𝑖, the speed of adjustment (error correction) parameter. By 

mapping the coefficients in eq. (6) algebraically to the corresponding ones in eq. (5) it 

can be seen that 𝛿𝑖 = 𝛽1𝑖, 𝜙0𝑖 = −𝛽0𝑖/𝛽1𝑖, 𝜙1𝑖 = −𝛽2𝑖/𝛽1𝑖, 𝜙2𝑖 = −𝛽3𝑖/𝛽1𝑖, 𝜙3𝑖 = 

−𝛽4𝑖/𝛽1𝑖, and 𝜙4𝑖 = −𝛽5𝑖/𝛽1𝑖.  

        The formulation of the ARDL area response model II is identical but replaces 

𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡 with 𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎)𝑖,𝑡, which denotes the previous period’s total fertilizer 

consumption per hectare of the gross cropped area as a proxy for technology.  

3.1.2   The NARDL Area Response Models                                   

       The formulation of the NARDL area response model I is:                         

∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡 = 𝛽0𝑖 + 𝛽1𝑖 𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−1 + 𝛽2𝑖
+  𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−1

+  + 𝛽2𝑖
−  𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−1

−  + 

𝛽3𝑖 𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−1 

                          + 𝛽4𝑖
+  𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−1

+  + 𝛽4𝑖
−  𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−1

−  + 𝛽5𝑖
+  𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−1

+  + 𝛽5𝑖
−  

𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−1
−  

                          + ∑ λ𝑖𝑗  ∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−𝑗
𝑁1
𝑗=1 + ∑  [𝑎𝑖𝑗

+  ∆𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−𝑗
+𝑁2

𝑗=0 +

𝑎𝑖𝑗
−  ∆𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−𝑗

− ] 

      + ∑ 𝑏𝑖𝑗  ∆𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−𝑗
𝑁3
𝑗=1  + ∑  [𝑐𝑖𝑗

+ ∆𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−𝑗
+𝑁4

𝑗=0 + 𝑐𝑖𝑗
− ∆𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−𝑗

− ]  

+ ∑  [𝑑𝑖𝑗
+  ∆𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−𝑗

+𝑁5
𝑗=0 + 𝑑𝑖𝑗

−  ∆𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−𝑗
− ] +𝐷_𝑛𝑓𝑠𝑚𝑡  +𝜇𝑖 + 𝜀𝑖𝑡, ….(8)                                  

where the variable superscripts ‘+’ and ‘−‘ denote the partial sum decompositions of 

the variable of concern, say `var′𝑖𝑡 , into positive and negative changes, that is 

       `var′𝑖𝑡
+  = ∑ ∆`var′𝑖𝑗

+𝑡
𝑗=1  = ∑ 𝑚𝑎𝑥𝑡

𝑗=1 (∆`var′𝑖𝑗 , 0),                                            …. (9)     

`var′𝑖𝑡
+  = ∑ ∆`var′𝑖𝑗

+𝑡
𝑗=1  = ∑ 𝑚𝑖𝑛𝑡

𝑗=1 (∆`var′𝑖𝑗, 0);                                        ….(10) 
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the parameter superscripts differentiate between the respective parameters for these 

partial sum processes; and the rest of the symbols represent as in eq. (5). This NARDL 

model I yields the short- and long-run elasticities similarly to the symmetric model. 

For instance, the short-run elasticities concerning the positive and negative price 

shocks are 𝑎𝑖𝑗
+  and 𝑎𝑖𝑗

− , while the respective long-run elasticities are −𝛽2𝑖
+ /𝛽1𝑖 and 

−𝛽2𝑖
− /𝛽1𝑖. 

        The reformulation of eq. (8) in the error correction representation yields: 

∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡 = 𝜏𝑖𝜉𝑖,𝑡−1 + ∑ λ𝑖𝑗  ∆𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−𝑗
𝑁1
𝑗=1  + ∑  [𝑎𝑖𝑗

+  ∆𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−𝑗
+𝑁2

𝑗=0 +

           𝑎𝑖𝑗
−  ∆𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−𝑗

− ]  + ∑ 𝑏𝑖𝑗  ∆𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−𝑗
𝑁3
𝑗=1  + 

∑  [𝑐𝑖𝑗
+ ∆𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−𝑗

+𝑁4
𝑗=0 + 𝑐𝑖𝑗

− ∆𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−𝑗
− ]  

     + ∑  [𝑑𝑖𝑗
+  ∆𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−𝑗

+𝑁5
𝑗=0 + 𝑑𝑖𝑗

−  ∆𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−𝑗
− ] + 𝐷_𝑛𝑓𝑠𝑚𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡,   ….(11)              

where, analogous to 𝛿𝑖𝜐𝑖,𝑡−1 in eq. (6), 

𝜉𝑖,𝑡−1 = 𝑙𝑛(𝑐𝑝ℎ)𝑖,𝑡−1 − 𝜎0𝑖 − 𝜎1𝑖
+ 𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−1

+  − 𝜎1𝑖
− 𝑙𝑛(𝑟𝑓ℎ𝑝)𝑖,𝑡−1

−  − 

𝜎2𝑖 𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡−1 

                                − 𝜎3𝑖
+ 𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−1

+  − 𝜎3𝑖
− 𝑙𝑛(𝑟_𝑝𝑠)𝑖,𝑡−1

−  − 𝜎4𝑖
+ 𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−1

+  − 𝜎4𝑖
− 

𝑙𝑛(𝑐𝑣𝑟𝑟)𝑖,𝑡−1
−                                                                                      …. (12)    

is the error correction term, and 𝜏𝑖, the speed of adjustment parameter. 

        In the otherwise identical NARDL area response model II, 𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎)𝑖,𝑡 

replaces 𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡. 
 

3.1.3   The ARDL and NARDL Yield Response Models                                                      

         
The ARDL and NARDL yield response models are formulated and 

reparameterized into ECMs analogously to the respective area response models. The 

yield response variables include (𝑟𝑓ℎ𝑝)𝑖,𝑡 and 𝐷_𝑛𝑓𝑠𝑚𝑡 as defined earlier, and as for 

the rest of the symbols, leaving the parameters aside, their denotation is as follows: 

(𝑐𝑝𝑦)𝑖,𝑡      ≡   chickpea yield in the current period in kg/ha         

(%𝑔𝑖𝑎)𝑖,𝑡    ≡   the current period’s percent gross irrigated area under all crops as a 

proxy for infrastructure: [ 
GIA

GCA
 × 100] 

(%𝑐𝑝𝑖𝑎)𝑖,𝑡   ≡   the current period’s percent irrigated area under chickpea as a measure 

of irrigation: 

                            [
Chickpea irrigated acreage in the current period (‘000 ha)  

Total chickpea acreage in the current period (‘000 ha) 
 × 100] 

(𝑟_𝑏𝑟)𝑖,𝑡      ≡   the current period’s rainfall in mm during branching: October – 

November 

(𝑟_𝑝𝑓)𝑖,𝑡      ≡   the current period’s rainfall in mm during pod filling: January – 

February 

(𝑡_𝑑𝑒𝑐)𝑖,𝑡    ≡   the maximum temperature in ℃ during December  
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(𝑡_𝑗𝑎𝑛)𝑖,𝑡    ≡   the maximum temperature in ℃ during January 

𝜐𝑖  and ϵ𝑖𝑡    ≡   the group-specific effect and the error term  
 

3.2   Estimation Technique                                                                                      
         

The study uses the LLC (Levin et al., 2002), HT (Harris & Tzavalis, 1999), 

Breitung (Breitung & Das, 2005), IPS (Im et al., 2003), ADF (Choi, 2001) and Hadri 

LM (Hadri, 2000) panel tests for the unit root analysis; the forval command to 

automatically generate the district-wise optimal lag orders through the Bayesian 

information criterion (BIC) in order to constitute the optimal lag order for the panel 

composed of the most common number of lags for each variable of concern across the 

cross-sections; the residual-based Kao (1999) test to confirm cointegration among the 

variables; and the statistical software package Stata 16.1 to estimate the models of 

concern through the PMG estimator – widely adopted in the ARDL framework, having 

been assessed by many authors as superior to the MG estimator (e.g., Abbasi et al., 

2022); Alamgir & Amin, 2021; Odugbesan et al., 2021; Salisu & Isah, 2017). 

IV   

 
 RESULTS AND DISCUSSION 

4.1   Preliminary Analyses                   

         

Table 1 reports descriptive statistics of concern on the area and yield response 

variables. While the ARDL approach to cointegration yields valid results regardless of 
 

TABLE 1:   DESCRIPTIVE STATISTICS ON AREA AND YIELD RESPONSE VARIABLES 

 

Variable No. of Obs. Mean Std. Dev. Min. Max. 

(1) (2) (3) (4) (5) (6) 

Area Response      

(𝒄𝒑𝒉) 1334 59.74 42.34 1.10 229.00 

(𝒓𝒇𝒉𝒑) 1334 64.22 15.60 32.30 132.10 

(%𝒈𝒊𝒂) 1334 22.00 16.13 0.40 75.64 

(𝒏𝒑𝒌_𝒉𝒂) 1334 34.40 34.23 0.18 221.18 

(𝒓_𝒑𝒔) 1334 928.85 302.89 180.50 2230.70 

(𝒄𝒗𝒓𝒓) 1334 20.22 11.98 0.34 86.43 

Yield Response      

(𝒄𝒑𝒚) 1334 760.77 304.51 107.69 2828.83 

(𝒓𝒇𝒉𝒑) 1334 64.22 15.60 32.30 132.10 

(%𝒈𝒊𝒂) 1334 22.78 16.36 0.53 75.64 

(𝒏𝒑𝒌_𝒉𝒂) 1334 36.10 34.96 0.30 221.18 

(%𝒄𝒑𝒊𝒂) 1334 27.52 24.69 0.00 146.30 

(𝒓_𝒃𝒓) 1334 39.90 51.33 0.00 735.80 

(𝒓_𝒑𝒇) 1334 22.38 31.59 0.00 194.40 

(𝒕_𝒅𝒆𝒄) 1334 26.58 1.70 20.88 32.32 

(𝒕_𝒋𝒂𝒏) 1334 25.18 2.10 20.70 35.22 
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 whether the order of integration of the underlying variables is one, zero, or a 

combination of both (Pesaran et al., 2001), it is still necessary to ascertain that no I (2) 

variable is involved, as its presence can render the regression of concern spurious 

(Qamruzzaman & Jianguo, 2018). All the variables of concern are either stationary in 

levels or are rendered stationary with first-order differencing at the 1% significance 

level, except for the area response variable 𝑙𝑛(%𝑔𝑖𝑎)𝑖,𝑡 under the Hadri LM test, its 

first difference proving stationary at the 10% level. The district-wise optimal number 

of the autoregressive and distributed lags for the area and yield response models show 

that (1, 0, 0, 0, 0) and (1, 0, 0, 0, 0, 0, 0, 0) are the orders consisting of the most common 

number of lags for each variable of concern across the cross-sections for the symmetric 

and asymmetric area response models, respectively. Such lag orders for the pertinent 

yield response models are (1, 0, 0, 0, 0, 0, 0, 0) and (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). 

These lag orders serve as the optimal lag orders for the respective panel data analyses. 

Table 2 depicts the results of the Kao cointegration tests for the area and yield response  

 
TABLE 2:   PANEL COINTEGRATION TEST RESULTS  

 

 

models. All the relevant statistics resoundingly reject the null of no cointegration, 

excluding the ADF test statistics for the area response models, for which this test rejects 

the null only in the ARDL model I and that, too, just at the 10% level, but this takes 

nothing away from the results of the other tests. The ADF test does not generally 

perform creditably and its empirical distribution can deviate significantly from the 

theoretical standard normal distribution (Barbieri, 2008).  
 

KAO Test Area Response Yield Response 

Statisti

c 

p-

value 

Statisti

c 

p-

value 

Statistic p-

value 

Statistic p-

value 

(1) (2) (3) (4) (5) 

ARDL Specification Model I Model II Model I Model II 

Modified Dickey-Fuller t -8.405 0.000 -5.979 0.000 -27.854 0.000 -27.840 0.000 

Dickey-Fuller t -7.143 0.000 -5.214 0.000 -17.579 0.000 -17.644 0.000 

Augmented Dickey-Fuller 

t 

-1.443 0.074 -1.076 0.141 -10.634 0.000 -10.775 0.000 

Unadjusted modified 

Dickey-Fuller t 

-17.383 0.000 -12.177 0.000 -40.249 0.000 -40.416 0.000 

Unadjusted Dickey-Fuller t -9.693 0.000 -7.301 0.000 -18.980 0.000 -19.071 0.000 
NARDL Specification Model I Model II Model I Model II 

Modified Dickey-Fuller t -5.362 0.000 -2.747 0.003 -29.486 0.000 -29.293 0.000 

Dickey-Fuller t -5.462 0.000 -3.224 0.001 -18.279 0.000 -18.363 0.000 

Augmented Dickey-Fuller 

t 

0.220 0.413 0.710 0.239 -11.381 0.000 -11.569 0.000 

Unadjusted modified 

Dickey-Fuller t 

18.164 0.000 -12.638 0.000 -41.557 0.000 -41.991 0.000 

Unadjusted Dickey-Fuller t -9.897 0.000 -7.455 0.000 -19.547 0.000 -19.726 0.000 
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4.2   ARDL Analysis of Area Response    

                                                               

        As depicted in Table 3, both models yield long-run responses to all the variables 

other than risk that are positive and significant at the 1 per cent level, indicating a 

favourable and normal consequence on planting decisions. The elasticity estimates 

from model I indicate that chickpea acreage increases by about 0.57 per cent and 0.42 

per cent, respectively, for every 1 per cent increase in the relative farm harvest price 

and pre-sowing rainfall, ceteris paribus, and vice versa; the corresponding figures for 

 
TABLE 3:   PMG ESTIMATES OF PANEL ARDL AREA RESPONSE MODELS 

Model I Model II 

Variable Coeff Variable Coeff Variable Coeff Variable Coeff 

Long Run Short Run Long Run Short Run 

(1) (2) (3) (4) (5) (6) (7) (8)   
__ec -

0.2832***b 

(0.0438)    

  
__ec -

0.2893***b 

(0.0477)  

𝒍𝒏(𝒓𝒇𝒉𝒑) 0.5679*** 

(0.1210)  
∆𝑙𝑛(𝑟𝑓ℎ𝑝) -0.1105** 

(0.0447)  
𝑙𝑛(𝑟𝑓ℎ𝑝) 0.4086*** 

(0.1092)  
∆𝑙𝑛(𝑟𝑓ℎ𝑝) -0.0851**   

(0.0412)  

𝒍𝒏(%𝒈𝒊𝒂) 0.1672*** 
(0.0421)  

∆𝑙𝑛(%𝑔𝑖𝑎) -0.1172* 
(0.0683)  

𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.1889*** 
(0.0267)  

∆𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.0214  
(0.0288)  

𝒍𝒏(𝒓_𝒑𝒔) 0.4229*** 

(0.0987)  
∆𝑙𝑛(𝑟_𝑝𝑠) -0.0150 

(0.0159)  
𝑙𝑛(𝑟_𝑝𝑠) 0.2767*** 

(0.0770)  
∆𝑙𝑛(𝑟_𝑝𝑠) 0.0286  

(0.0185)  

𝒍𝒏(𝒄𝒗𝒓𝒓) -0.0319    

(0.0367)  

∆𝑙𝑛(𝑐𝑣𝑟𝑟) 0.0389*** 

(0.0105)  

𝑙𝑛(𝑐𝑣𝑟𝑟) -0.0151    

(0.0323)  

∆𝑙𝑛(𝑐𝑣𝑟𝑟) 0.0338*** 

(0.0099)    
𝐷_𝑛𝑓𝑠𝑚 0.0482* 

(0.0254) 

  
𝐷_𝑛𝑓𝑠𝑚 0.0352 

(0.0261)    
_cons -0.4661*** 

(0.0796) 

  
_cons -0.0287 

(0.0492) 
No. of observations = 1305   /   No. of cross sections = 

29 

No. of observations = 1305   /   No. of cross sections = 

29 

Log Likelihood = 279.8629 Log Likelihood = 263.6043 

*** p < 0.01, ** p < 0.05, * p < 0.1 (Figures in parentheses are standard errors). 
b No. of yrs, say N, for adjustment to within 5% of complete adjustment = 9 [obtained from the relationship: (1 − 

|Coeff|)N < 0.05].  

 

model II are 0.41% and 0.28%. The infrastructure and technology factors imply that 

all else equal, a 1% increase in these variables induces acreage increases of 0.17% and 

0.19%, respectively, and vice versa. However, the risk factor proves insignificant. 

        The quasi-identical averaged estimates of the error correction coefficient from 

both models are properly signed (negative) and highly significant (see Table 3, cols. 4 

and 8), with a mean value of about -0.29, implying nine years for adjustment to within 

5% of complete adjustment. In the short run, the response to price emerges significantly 

negative. In this regard, one might conjecture that farmers have a relatively fixed 

demand for money in the short run, allocating only enough land to chickpea to generate 

the desired income and meet their on-farm consumption requirement, with the rest 

dedicated to the subsistence crop – over time, they tend to respond positively as the 

shocks persist. Alternatively, the negative response might be ascribable to the 
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imposition of symmetry in the underlying relationship, jeopardizing the identification 

of the long-run relationship and resulting in spurious dynamic responses (Shin et al., 

2013).  

Short-run responses elicited by the infrastructure factor (Model I) and the risk 

factor under both models are also contrary to expectations; the former reverses with 

time while the risk-incurring tendency dies. The NFSM dummy claims significance 

only under Model I, indicating that government intervention concerning NFSM post-

2010 increases chickpea acreage by about 5%, all else equal. 

 

4.3   NARDL Analysis of Area Response                                                     

 

The positive as well as negative shocks to price and rainfall all evoke positive 

long-run responses (i.e., in the direction of the shock) under both models (see Table 4), 

which prove significant at the conventional levels (1% and 5%). For model I, the price 

estimates indicate that ceteris paribus, a 1% positive price change increases acreage by 

about 0.74%, whereas a 1 % negative change decreases it by about 0.53%. The Wald  
 

TABLE 4:   PMG ESTIMATES OF PANEL NARDL AREA RESPONSE MODELS 

Model I Model II 

Variable Coeff Variable Coeff Variable Coeff Variable Coeff 
Long Run Short Run Long Run Short Run 

(1) (2) (3) (4) (5) (6) (7) (8) 

  __ec -

0.3105***b 

(0.0465) 

  __ec -

0.3039***d 

(0.0474)           

𝒍𝒏(𝒓𝒇𝒉𝒑)+ 0.7370*** 

(0.1436) 
∆𝑙𝑛(𝑟𝑓ℎ𝑝)+ -0.1501    

(0.0973) 
𝑙𝑛(𝑟𝑓ℎ𝑝)+ 0.3813***  

(0.1422)    
∆𝑙𝑛(𝑟𝑓ℎ𝑝)+ -0.0229    

(0.0854) 

𝒍𝒏(𝒓𝒇𝒉𝒑)− 0.5285*** 

(0.1581) 
∆𝑙𝑛(𝑟𝑓ℎ𝑝)− -0.1130 

(0.0738)        
𝑙𝑛(𝑟𝑓ℎ𝑝)− 0.3734***  

(0.1382) 
∆𝑙𝑛(𝑟𝑓ℎ𝑝)− -0.1484**   

(0.0647)           

𝒍𝒏(%𝒈𝒊𝒂) 0.2331*** 
(0.0537) 

∆𝑙𝑛(%𝑔𝑖𝑎) -0.1408*    
(0.0771)  

𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.1309*** 
(0.0390) 

∆𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.0419    
(0.0332) 

𝒍𝒏(𝒓_𝒑𝒔)+ 0.3814*** 

(0.0914) 
∆𝑙𝑛(𝑟_𝑝𝑠)+ 0.0218    

(0.0400) 
𝑙𝑛(𝑟_𝑝𝑠)+ 0.3093*** 

(0.0815) 
∆𝑙𝑛(𝑟_𝑝𝑠)+ 0.0729**   

(0.0371) 

𝒍𝒏(𝒓_𝒑𝒔)− 0.3384*** 

(0.0899) 

∆𝑙𝑛(𝑟_𝑝𝑠)− -0.0446    

(0.0393) 

𝑙𝑛(𝑟_𝑝𝑠)− 0.2242**  

(0.0764) 

∆𝑙𝑛(𝑟_𝑝𝑠)− -0.0141    

(0.0432) 

𝒍𝒏(𝒄𝒗𝒓𝒓)+ -0.0908** 

(0.0382) 
∆𝑙𝑛(𝑐𝑣𝑟𝑟)+ 0.0637**   

(0.0257) 
𝑙𝑛(𝑐𝑣𝑟𝑟)+ -0.0491    

(0.0371) 
∆𝑙𝑛(𝑐𝑣𝑟𝑟)+ 0.0425* 

(0.0227)          

𝒍𝒏(𝒄𝒗𝒓𝒓)− 0.0476 

(0.0360) 
∆𝑙𝑛(𝑐𝑣𝑟𝑟)− 0.0185    

(0.0169) 
𝑙𝑛(𝑐𝑣𝑟𝑟)− -0.0017    

(0.0358)  
∆𝑙𝑛(𝑐𝑣𝑟𝑟)− 0.0313**   

(0.0143) 

  𝐷_𝑛𝑓𝑠𝑚   0.0998*** 
(0.0292)    

  𝐷_𝑛𝑓𝑠𝑚   0.0466*    
(0.0282) 

  _cons  1.0026*** 

(0.1748) 

  _cons   1.0073*** 

(0.1888) 

No. of observations = 1305   /   No. of cross sections = 

29 

No. of observations = 1305   /   No. of cross sections = 29 

Log Likelihood = 336.7621 Log Likelihood = 312.2471 

----------------------------------------- 
*** p < 0.01, ** p < 0.05, * p < 0.1 (Figures in parentheses are standard errors). 
b No. of yrs, say N, for 94.5% plus adjustment = 8 [obtained from the relationship: (1 − |Coeff|)N < 0.055]. 
d No. of yrs, say N, for adjustment to within 5% of complete adjustment = 9 [obtained from the relationship: (1 − |Coeff|)N < 0.05]. 
 

Source: Authors 
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test rejects the null hypothesis of long-run symmetry (see Table 5), implying the 

response to price to be asymmetric, in contrast to the relevant ARDL finding. However, 

the response under this model to rainfall proves symmetric, with an average elasticity 

estimate of nearly 0.36.  

Under model II, the Wald test confirms symmetry for the price elasticity 

estimates of 0.38 and 0.37, but asymmetry for the response to rainfall where a unit 

positive change increases acreage by 0.31%, but a unit negative change decreases it by 

0.22 per cent. Again, this contradicts the corresponding ARDL estimation result.  
 

TABLE 5:   REACTION AND IMPACT ASYMMETRIES IN AREA RESPONSE 

 

The long-run responses to the undecomposed infrastructure and technology 

variables in their respective models, each being positive and highly significant, 

correspond with their ARDL counterparts but with higher and lesser elasticity 

estimates of 0.23 and 0.13, respectively. As for the response to the risk factor, only the 

long-run coefficient estimate of the positive component of the underlying variable in 
model I emerges significant, being negative. This estimate suggests that a 1% risk 

increase decreases acreage by about 0.09%, holding other variables constant, which 

Variable Model I Model II 

Coefficient Wald testh Responseb Coefficient WALD testh Responsed 
p-

valu

e 

Sig

n 
𝜒2 p-value p-

valu

e 

Sig

n 
𝜒2 p-value 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

𝒍𝒏(𝒓𝒇𝒉𝒑)+ *** + 3.1

6 
0.0756

* 
Asymmetri

c 
*** + 0.0

0 
0.9519 Symmetric 

𝒍𝒏(𝒓𝒇𝒉𝒑)− *** + *** + 

𝒍𝒏(𝒓_𝒑𝒔)+ *** + 1.0

3 
0.3099 Symmetric *** + 4.2

4 
0.0395*

* 
Asymmetri

c 𝒍𝒏(𝒓_𝒑𝒔)− *** + ** + 

𝒍𝒏(𝒄𝒗𝒓𝒓)+ ** − N/A Asymmetri

c 
NS − N/A NS 

𝒍𝒏(𝒄𝒗𝒓𝒓)− NS + NS − 

∆

𝒍𝒏(𝒓𝒇𝒉𝒑)+ 
NS − N/A NS NS − N/A Asymmetri

c 
∆

𝒍𝒏(𝒓𝒇𝒉𝒑)− 
NS − ** − 

∆𝒍𝒏(𝒓_𝒑𝒔)+ NS + N/A NS ** + N/A Asymmetri

c ∆𝒍𝒏(𝒓_𝒑𝒔)− NS − NS − 

∆

𝒍𝒏(𝒄𝒗𝒓𝒓)+ 
** + N/A Asymmetri

c 
* + 0.1

4 
0.7109 Symmetric 

∆

𝒍𝒏(𝒄𝒗𝒓𝒓)− 
NS + ** + 

----------------------------------------- 
h𝐻𝑂: `var’_pos = `var’_neg; b No. of asymmetric responses (LR/SR) ≡ 75%; d No. of asymmetric responses (LR/SR) 

≡ 60%. 

*** p < 0.01, ** p < 0.05, * p < 0.1; NS → Not significant; N/A → Not applicable. 
 

Source: Authors 
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indicates risk aversion. This result also contrasts with the relevant ARDL finding and 

confirms an asymmetric response to risk.  

The averaged error correction coefficient estimates are similar to their 

counterparts from the ARDL estimation, reflecting an overall partial adjustment 

process (see Table 4, cols. 4 and 8) with an identical period of 9 years for adjustment 

to within 5% of complete adjustment. Regarding the short run, price exerts no influence 

under Model I, as against the significantly negative impact under the ARDL Model I – 

price volatility could be a plausible reason for farmers’ indifference. The NARDL 

Model II, however, suggests a significantly negative effect of price decreases, unlike 

in the long run, which could stem from farmers’ relatively fixed short-run demand for 

money income, as discussed in subsection 4.2. Price increases have an insignificant 

impact, rendering the short-run area response to price asymmetric. Similarly, Model II 

indicates impact asymmetry in response to precipitation, with only a significantly 

positive impact of its increases. Turning to risk, which yields unexpected positive 

impacts, Model I evinces asymmetry, with the negative component proving 

insignificant. All these results contrast with their respective ARDL findings. The 

NFSM impact under Model I is double that under Model II, equalling that under the 

ARDL Model I. 
  

4.4   ARDL Analysis of Yield Response      
                                                  

 In the long run (see Table 6), the relative farm harvest price and the 

infrastructure and technology variables under their respective models prove positive 

and highly significant, in conformity with the area response results. The results suggest 

that ceteris paribus, a 1% increase in the relative farm harvest price increases per 

hectare productivity by 0.21% under model I and 0.17% under model II, and vice versa; 

the infrastructure and technology variables indicate such impacts in the order of 0.08% 

each. Irrigation and rainfall during branching indicate highly significant positive and 

negative impacts under each model, with cross-model comparability. 

 

These results imply, on average, that ceteris paribus, a one-unit irrigation change 

induces a change of about 0.56% in yield, whereas if rainfall during branching 

increases by one unit, yield decreases by about 0.1%, and vice versa, which seems to 

suggest that higher rainfall at this stage leads to excessive vegetative growth at the 

expense of the yield. The response to rainfall during pod filling proves negative but 

insignificant under both models. The maximum temperatures during December and 

January, which affect both flowering and pod filling, evoke significantly negative 

responses, the comparable elasticity estimates across the models averaging −0.9 and 

−1.79, respectively, the latter estimate signifying elastic long-run responses with more-

than-proportionate impacts on yield. The adverse impact of higher maximum 

temperatures during these months likely has to do with flower drop and reduced pod 

set (Gaur et al., 2010). 

 
 



INDIAN JOURNAL OF AGRICULTURAL ECONOMICS 814 

TABLE 6:   PMG ESTIMATES OF PANEL ARDL YIELD RESPONSE MODELS 

 

 

Under both models, the averaged error correction coefficient estimates bear the 

expected negative sign and prove highly significant, with values within the a priori 

expected range (see Table 6, cols. 4 and 8), each implying just three years for 95% plus 

adjustment. The short-run dynamics indicate that chickpea yields do not respond 

significantly to price changes. Infrastructure (Model I) and technology (Model II) 

evoke responses stronger than their long-run counterparts. Irrigation exerts a 

significantly negative impact under Model I. This counterintuitive result is attributable 

to the fact that more than two irrigations, one each at branching and pod filling, can 

lead to a trade-off between vegetative growth and yield – excessive irrigation enhances 

the former, thereby depressing the latter (Gaur et al., 2010, p.11; GoI, 2017). Rainfall 

and temperature variables all prove significantly positive. Their contradictory findings 

regarding the sign and absolute magnitude between the short and long runs indicate 

that the long-run response is not usually immediate. The NFSM dummy emerges 

positive but insignificant. 

Model I Model II 

Variable Coeff Variable Coeff Variable Coeff Variable Coeff 

Long Run Short Run Long Run Short Run 

(1)          (2)          (3)          (4)           (5)          (6)          (7)          (8) 

  __ec  -
0.6401***b 

(0.0388)  

  __ec  -
0.6735***b 

(0.0363)             

𝒍𝒏(𝒓𝒇𝒉𝒑) 

 

0.2115*** 

(0.0594)    
∆𝑙𝑛(𝑟𝑓ℎ𝑝)  0.0215    

(0.0351)  
𝑙𝑛(𝑟𝑓ℎ𝑝) 
 

0.1729***  

(0.0645)  
∆𝑙𝑛(𝑟𝑓ℎ𝑝) -0.0405    

(0.0318)  

𝒍𝒏(%𝒈𝒊𝒂) 0.0772***  

(0.0260)  
∆𝑙𝑛(%𝑔𝑖𝑎) 0.4050*** 

(0.0563)  
𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎)  

0.0762*** 

(0.0185)  

∆𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.1421*** 

(0.0293)  

(%𝒄𝒑𝒊𝒂) 0.0058*** 
(0.0009)  

∆(%𝑐𝑝𝑖𝑎)  -0.0051**   
(0.0025)  

(%𝑐𝑝𝑖𝑎) 0.0053*** 
(0.0008)  

∆(%𝑐𝑝𝑖𝑎)  -0.0032    
(0.0031)  

(𝒓_𝒃𝒓) -

0.0009***  

(0.0003)  

∆(𝑟_𝑏𝑟) 0.0005*** 

(0.0001)  
(𝑟_𝑏𝑟) -

0.0011*** 

(0.0003)  

∆(𝑟_𝑏𝑟) 0.0006*** 

(0.0001)  

(𝒓_𝒑𝒇) -0.0004    
(0.0004)  

∆(𝑟_𝑝𝑓) 0.0006***   
(0.0002)  

(𝑟_𝑝𝑓) -0.0004    
(0.0004) 

∆(𝑟_𝑝𝑓) 0.0006***  
(0.0002)  

𝒍𝒏(𝒕_𝒅𝒆𝒄) -0.9421**   

(0.3690)  
∆𝑙𝑛(𝑡_𝑑𝑒𝑐) 0.4239***  

(0.1598)  
𝑙𝑛(𝑡_𝑑𝑒𝑐) -0.8551**   

(0.3522)  
∆𝑙𝑛(𝑡_𝑑𝑒𝑐) 0.5464*** 

(0.1604)  

𝒍𝒏(𝒕_𝒋𝒂𝒏) -

1.7334*** 
(0.2817)  

∆𝑙𝑛(𝑡_𝑗𝑎𝑛) 0.2984*** 

(0.0900 
𝑙𝑛(𝑡_𝑗𝑎𝑛) -

1.8485*** 
(0.2655)  

∆𝑙𝑛(𝑡_𝑗𝑎𝑛) 0.3420*** 

(0.1006)  

  𝐷_𝑛𝑓𝑠𝑚   0.0217    

(0.0277)  

  𝐷_𝑛𝑓𝑠𝑚   0.0255    

(0.0282)  

  _cons  8.9715*** 

(0.5468)  

  _cons  9.6144*** 

(0.5210)  
No. of observations = 1305   /   No. of cross sections = 

29 

No. of observations = 1305   /   No. of cross sections = 29 

Log Likelihood = 327.336 Log Likelihood = 307.8477 

*** p < 0.01, ** p < 0.05, * p < 0.1 (Figures in parentheses are standard errors).b  No. of yrs, say N, for adjustment to 

within 5% of complete adjustment = 3 [obtained from the relationship: (1 − |Coeff|)N < 0.05]. 
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4.5   NARDL Analysis of Yield Response     

                                                    

     The long-run parameter estimates in Table 7 reveal that the relative farm harvest 

price, rainfall during branching, and infrastructure and technology variables have 

insignificant impacts.  
 

TABLE 7 :   PMG ESTIMATES OF PANEL NARDL YIELD RESPONSE MODELS 
 

Model I Model II 

Variable Coeff Variable Coeff Variable Coeff Variable Coeff 

Long Run Short Run Long Run Short Run 
           (1)         (2)              (3)         (4)           (5)         (6)             (7)         (8) 

  __ec  -

0.7207***
b
 

(0.0400)  

  __ec  -

0.7451***
b
 

(0.0392) 

𝒍𝒏(𝒓𝒇𝒉𝒑)+ -0.0748    
(0.0651)   

∆𝑙𝑛(𝑟𝑓ℎ𝑝)+ 0.1234*    
(0.0669)  

𝑙𝑛(𝑟𝑓ℎ𝑝)+ -0.0662    
(0.0657)  

∆𝑙𝑛(𝑟𝑓ℎ𝑝)+ 0.0380    
(0.0770)  

𝒍𝒏(𝒓𝒇𝒉𝒑)− 0.0367    

(0.0793)  
∆𝑙𝑛(𝑟𝑓ℎ𝑝)− 0.1111    

(0.0703)  
𝑙𝑛(𝑟𝑓ℎ𝑝)− 0.0202    

(0.0776)  
∆𝑙𝑛(𝑟𝑓ℎ𝑝)− 0.0753    

(0.0582) 

𝒍𝒏(%𝒈𝒊𝒂) 0.0323    

(0.0304)  

∆𝑙𝑛(%𝑔𝑖𝑎) 0.4143*** 

(0.0671)  

𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.0218    

(0.0236)  

∆𝑙𝑛(𝑛𝑝𝑘_ℎ𝑎) 0.1599*** 

(0.0333) 

(%𝒄𝒑𝒊𝒂) 0.0035*** 

(0.0009)  
∆(%𝑐𝑝𝑖𝑎) 0.0009*    

(0.0054)  
(%𝑐𝑝𝑖𝑎) 0.0031*** 

(0.0008)  
∆(%𝑐𝑝𝑖𝑎) 0.0015    

(0.0049) 

(𝒓_𝒃𝒓)+ 0.0001    

(0.0004)  
∆(𝑟_𝑏𝑟)+ 0.0001    

(0.0002)  
(𝑟_𝑏𝑟)+ -0.0000    

(0.0004)  
∆(𝑟_𝑏𝑟)+ 0.0002    

(0.0002) 

(𝒓_𝒃𝒓)− -0.0003    
(0.0004)  

∆(𝑟_𝑏𝑟)− 0.0007*** 
(0.0001)  

(𝑟_𝑏𝑟)− -0.0005    
(0.0004)  

∆(𝑟_𝑏𝑟)− 0.0007*** 
(0.0001) 

(𝒓_𝒑𝒇)+ 0.0008    

(0.0005)  
∆(𝑟_𝑝𝑓)+ -0.0004    

(0.0005)  
(𝑟_𝑝𝑓)+ 0.0007    

(0.0005) 
∆(𝑟_𝑝𝑓)+ -0.0002    

(0.0005)  

(𝒓_𝒑𝒇)− 0.0011**   

(0.0005)  

∆(𝑟_𝑝𝑓)− 0.0003    

(0.0005)  

(𝑟_𝑝𝑓)− 0.0009*    

(0.0005)  

∆(𝑟_𝑝𝑓)− 0.0004    

(0.0005)  

𝒍𝒏(𝒕_𝒅𝒆𝒄)+ -

1.5289*** 

(0.3907)  

∆𝑙𝑛(𝑡_𝑑𝑒𝑐)+ 0.4009**   

(0.2038)  
𝑙𝑛(𝑡_𝑑𝑒𝑐)+ -

1.5072*** 

(0.3828) 

∆𝑙𝑛(𝑡_𝑑𝑒𝑐)+ 0.3243    

(0.2076) 

𝒍𝒏(𝒕_𝒅𝒆𝒄)− -
1.4313***  

(0.4361)  

∆𝑙𝑛(𝑡_𝑑𝑒𝑐)− 0.9175***  
(0.3004)  

𝑙𝑛(𝑡_𝑑𝑒𝑐)− -
1.4289*** 

(0.4265) 

∆𝑙𝑛(𝑡_𝑑𝑒𝑐)− 1.2885*** 
(0.2876)  

𝒍𝒏(𝒕_𝒋𝒂𝒏)+ -

1.2889*** 

(0.3468)  

∆𝑙𝑛(𝑡_𝑗𝑎𝑛)+ 0.5044**   

(0.1966)  
𝑙𝑛(𝑡_𝑗𝑎𝑛)+ -

1.5925*** 

(0.3407)  

∆𝑙𝑛(𝑡_𝑗𝑎𝑛)+  0.6920*** 

(0.1936)  

𝒍𝒏(𝒕_𝒋𝒂𝒏)− -

1.9375*** 

(0.3251)  

∆𝑙𝑛(𝑡_𝑗𝑎𝑛)− 0.3453*    

(0.1876)  
𝑙𝑛(𝑡_𝑗𝑎𝑛)− -

2.1629*** 

(0.3200) 

∆𝑙𝑛(𝑡_𝑗𝑎𝑛)−  0.3312*    

(0.1934) 

  𝐷_𝑛𝑓𝑠𝑚   -0.0628*    

(0.0342)  

  𝐷_𝑛𝑓𝑠𝑚   -0.0710**   

(0.0348) 
  _cons  4.4651*** 

(0.2522)  

  _cons  4.6486*** 

(0.2457) 

No. of observations = 1305   /   No. of cross sections = 

29 

No. of observations = 1305   /   No. of cross sections = 29 

Log Likelihood = 473.1778 Log Likelihood = 447.4234 
 

*** p < 0.01, ** p < 0.05, * p < 0.1 (Figures in parentheses are standard errors). 
b  No. of yrs, say N, for adjustment to within 5% of complete adjustment = 3 [obtained from the relationship: (1 − 

|Coeff|)N < 0.05]. 
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The positive component of rainfall during pod-filling is also insignificant, but the 

negative component proves significantly positive under both models, suggesting 

reaction asymmetry. All of these findings contrast markedly with the relevant ARDL 

estimates. The insensitivity of yield to price may be attributed to its primary 

dependence on non-price factors With respect to infrastructure and technology, one 

possibility is acreage expansion into inferior-quality land, resulting in lower yield even 

with proportionate expansions at the extensive and intensive margins (Feng & 

Babcock, 2010; Miao et al., 2016). Both models imply that, all else equal, a one-unit 

decrease in rainfall during pod filling decreases yield by about 0.1%. Like its ARDL 

analogue, the long-run yield response to irrigation is significantly positive, consistent 

with expectations, and similar under both models but less pronounced. On average, 

yield changes by about 0.33% in response to a one-unit change in irrigation, ceteris 

paribus.  

  
TABLE 8:   REACTION AND IMPACT ASYMMETRIES IN YIELD RESPONSE 

 

 

 

Variable Model I                   Model II 

Coefficient Wald testh Response
b 

Coefficient WALD Testh Response
d p-

value 

Sig

n 
𝜒2 p-value p-

value 

Sig

n 
𝜒2 p-value 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

𝒍𝒏(𝒓𝒇𝒉𝒑)+ NS − N/A NS NS − N/A NS 

𝒍𝒏(𝒓𝒇𝒉𝒑)− NS + NS + 

(𝒓_𝒃𝒓)+ NS + N/A NS NS − N/A NS 

(𝒓_𝒃𝒓)− NS − NS − 

(𝒓_𝒑𝒇)+ NS + N/A Asymmetri

c 

NS + N/A   

Asymmet

ric 
(𝒓_𝒑𝒇)− ** + * + 

𝒍𝒏(𝒕_𝒅𝒆𝒄)+ *** − 0.37 0.5420 Symmetric *** − 0.27 0.6067 Symmetric 

𝒍𝒏(𝒕_𝒅𝒆𝒄)− *** − *** − 

𝒍𝒏(𝒕_𝒋𝒂𝒏)+ *** − 15.70 0.0001**
* 

Asymmetri
c 

*** − 12.61  0.0004*** Asymmetric 

𝒍𝒏(𝒕_𝒋𝒂𝒏)− *** − *** − 

∆

𝒍𝒏(𝒓𝒇𝒉𝒑)+ 

* + N/A Asymmetri
c 

NS + N/A NS 

∆

𝒍𝒏(𝒓𝒇𝒉𝒑)− 

NS + NS + 

∆(𝒓_𝒃𝒓)+ NS + N/A Asymmetri

c 

NS + N/A Asymmetric 

∆(𝒓_𝒃𝒓)− *** + *** + 

∆(𝒓_𝒑𝒇)+ NS − N/A NS NS − N/A NS 

∆(𝒓_𝒑𝒇)− NS + NS + 

∆𝒍𝒏(𝒕_𝒅𝒆𝒄)+ ** + 1.49 0.2224 Symmetric NS + N/A Asymmetric 

∆𝒍𝒏(𝒕_𝒅𝒆𝒄)− *** + *** + 

∆𝒍𝒏(𝒕_𝒋𝒂𝒏)+ ** + 0.2

1 

0.6467 Symmetric *** + 1.1

4 

0.2866 Symmetric 

∆𝒍𝒏(𝒕_𝒋𝒂𝒏)− * + * + 
h𝐻𝑂: `var’_pos = `var’_neg; b No. of asymmetric responses (LR/SR) ≡ 57%; d No. of asymmetric responses (LR/SR) 

≡ 67%. 

*** p < 0.01, ** p < 0.05, * p < 0.1; NS → Not significant; N/A → Not applicable. Source : Authors 
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 The responses to December and January maximum temperatures are 

significantly negative and elastic across the models. On average, all else equal, a 1% 

increase in December temperature decreases yield by about 1.52% while a 1% negative 

change induces an increase of about 1.43%, the corresponding figures for January 

temperature being 1.44% and 2.05%, respectively. The responses for December 

temperature are much more substantial than their ARDL analogues, whereas those for 

January temperature are comparable. However, the Wald test results in Table 8 indicate 

these responses to be symmetric and asymmetric, respectively. 

Table 7 (cols. 4 and 8) also reports that the averaged estimates of the error 

correction coefficient have nearly the same value under both models and reflect a 

partial adjustment process overall, akin  to  their  ARDL  counterparts but  greater  in  

 absolute magnitude. However, they suggest the same three-year duration for 

adjustment to be within 5% of the complete adjustment. In the short run, the impacts 

of the positive and negative components of the relative farm harvest price are positive 

under both models, but only that of price increases under model I is statistically 

significant. This response, which is at variance with the long-run results, like the 

responses concerning infrastructure, technology and rainfall variables, signifies impact 

asymmetry for price. These findings, like those on irrigation, rainfall during pod filling, 

and December maximum temperature, contrast with the ARDL results. The 

insignificant positive component estimate of the rainfall during branching under each 

model renders the response to this variable asymmetric.  

All the coefficient estimates of the maximum temperatures during December and 

January, except for the positive component estimate for December temperature under 

model II, are positive and statistically significant. Thus, the short-run response to the 

December maximum temperature is asymmetric. The response to the negative 

component of December maximum temperature is substantial and elastic under model 

II. The short-run responses to the temperature variables switch their signs over the long 

run. The direction of asymmetry, too, switches between the short and long runs – an 

important and relatively common finding in the growing NARDL literature (Shin et 

al., 2013). The NFSM dummy indicates significantly negative impacts under both 

models, in contrast to positive but insignificant ARDL estimates. The negative 

estimates suggest that, on average, chickpea yield decreases by about 7% with post-

2010 government intervention over NFSM, possibly reflecting yield fluctuations 

owing to acreage expansion onto lower-grade land (as hypothesized above for the 

insensitivity to infrastructure and technology). 
 

V    

 
CONCLUSIONS 

  

This study evaluates the area and yield responses to price and selected non-

price variables using the panel data extensions of Shin et al.’s (2014) NARDL model 

and also provides estimates from the ARDL model of Pesaran and Shin (1998, as cited 

in Shin et al., 2013) and Pesaran et al. (2001). As regards the NARDL analyses, the 
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area response results for the long run indicate asymmetric responses for the relative 

FHP (Model I), the risk factor (Model I) and the pre-sowing rainfall (Model II). The 

short-run results show asymmetry for the risk factor (Model I), relative FHP (Model 

II) and pre-sowing rainfall (Model II). The yield response results reveal reaction 

asymmetry for the rainfall during pod filling and the maximum temperature during 

January (both models) and impact asymmetry for the relative FHP (Model I), the 

rainfall during branching (both models) and the maximum temperature during 

December (Model II).  

Thus, 67% and 33% of the variables (decomposed) under the area response 

Models I and II, respectively, evoke asymmetric responses in the long run, whereas the 

reverse holds for the short run. Similarly, chickpea yield responds asymmetrically to 

40% of the variables (decomposed) under each yield response model, both in the long 

and short runs. The percentages of asymmetric responses under the area response 

Models I and II work out at 75% and 60%, respectively, with the corresponding figures 

for the yield response models being 57% and 67%. These findings offer fresh 

perspectives on pulse supply responsiveness, which could significantly inform 

policymaking in this domain.     
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